山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 56-63.doi: 10.6040/j.issn.1673-3770.0.2021.513
谷钰,万鑫,肖自安
GU Yu, WAN XinOverview,XIAO Zi'an
摘要: 慢性鼻窦炎(CRS)按其病理特征分为嗜酸性粒细胞(EOS)型和非嗜酸性粒细胞(nEOS)型,其中nEOS型中最常见的是中性粒细胞(neutrophil, NEU)浸润。EOS主导Th2型炎症,NEU浸润更多见于Th1和Th17型炎症。长期以来,认为NEU和EOS在CRS发病机制中可能处于相互排斥的对立关系。但近年研究发现,在临床症状最重的难治性CRS鼻黏膜或鼻息肉组织中,NEU和EOS浸润均明显增多,并且相互影响。通过文献复习,对CRS中NEU和EOS混合性炎症及两者之间相互影响的研究进展进行综述,并就临床治疗对策进行讨论。
中图分类号:
[1] 慕婷婷, 杨玉娟, 张宇, 等. IL-36在慢性鼻-鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 114-118. doi:10.6040/j.issn.1673-3770.0.2020.146. MU Tingting, YANG Yujuan, ZHANG Yu, et al. Research progress of IL-36 in chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 114-118. doi:10.6040/j.issn.1673-3770.0.2020.146. [2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019(2): 81-100. [3] 蒋子涵, 孟娟. 慢性鼻窦炎内在型研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(1): 13-18. doi:10.13201/j.issn.1001-1781.2020.01.004. JIANG Zihan, MENG Juan. Advances in the endotypes of chronic rhinosinusitis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(1): 13-18. doi:10.13201/j.issn.1001-1781.2020.01.004. [4] Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity[J]. J Allergy Clin Immunol, 2015, 135(3): 626-635. doi:10.1016/j.jaci.2014.11.001. [5] Cho SH, Kim DW, Gevaert P. Chronic rhinosinusitis without nasal polyps[J]. J Allergy Clin Immunol Pract, 2016, 4(4): 575-582. doi:10.1016/j.jaip.2016.04.015. [6] Calus L, van Bruaene N, Bosteels C, et al. Twelve-year follow-up study after endoscopic sinus surgery in patients with chronic rhinosinusitis with nasal polyposis[J]. Clin Transl Allergy, 2019, 9: 30. doi:10.1186/s13601-019-0269-4. [7] Gevaert E, Zhang N, Krysko O, et al. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation[J]. J Allergy Clin Immunol, 2017, 139(6): 1849-1860.e6. doi:10.1016/j.jaci.2017.01.019. [8] 娄鸿飞, 王成硕. 慢性鼻窦炎分型研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 10-13. doi:10.6040/j.issn.1673-3770.1. 2018.008. LOU Hongfei, WANG Chengshuo. Progress in classification of chronic sinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(3): 10-13. doi:10.6040/j.issn.1673-3770.1. 2018.008. [9] Cao PP, Li HB, Wang BF, et al. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese[J]. J Allergy Clin Immunol, 2009, 124(3): 478-484, 484.e1-2. doi:10.1016/j.jaci.2009.05.017. [10] Delemarre T, Holtappels G, de Ruyck N, et al. Type 2 inflammation in chronic rhinosinusitis without nasal polyps: another relevant endotype[J]. J Allergy Clin Immunol, 2020, 146(2): 337-343.e6. doi:10.1016/j.jaci.2020.04.040. [11] 郑铭, 王敏, 李颖, 等. 慢性鼻窦炎伴鼻息肉的免疫炎性标志物表达及其对术后复发的预测价值[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 174-180. doi:10.3760/cma.j.issn.1673-0860.2019.03.003. ZHENG Ming, WANG Min, LI Ying, et al. Expression of immunological and inflammatory biomarkers in chronic rhinosinusitis with nasal polyps and its predictive value for recurrence[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 174-180. doi:10.3760/cma.j.issn.1673-0860.2019.03.003. [12] 李静, 施心怡, 杨瑶, 等. 慢性鼻窦炎的临床病理与预后关系的探讨[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(10): 914-919. doi:10.13201/j.issn.2096-7993.2021.10.011. LI Jing, SHI Xinyi, YANG Yao, et al. The relationship between clinical pathology and prognosis of chronic rhinosinusitis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2021, 35(10): 914-919. doi:10.13201/j.issn.2096-7993.2021.10.011. [13] Delemarre T, Bochner BS, Simon HU, et al. Rethinking neutrophils and eosinophils in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2021, 148(2): 327-335. doi:10.1016/j.jaci.2021.03.024. [14] Huvenne W, Callebaut I, Reekmans K, et al. Staphylococcus aureus enterotoxin B augments granulocyte migration and survival via airway epithelial cell activation[J]. Allergy, 2010, 65(8): 1013-1020. doi:10.1111/j.1398-9995.2009.02313.x. [15] Ekstedt S, Säfholm J, Georén SK, et al. Dividing neutrophils in subsets reveals a significant role for activated neutrophils in the development of airway hyperreactivity[J]. Clin Exp Allergy, 2019, 49(3): 285-291. doi:10.1111/cea.13311. [16] Arebro J, Drakskog C, Winqvist O, et al. Subsetting reveals CD16 high CD62L dim neutrophils in chronic rhinosinusitis with nasal polyps[J]. Allergy, 2019, 74(12): 2499-2501. doi:10.1111/all.13919. [17] Kim YS, Han D, Kim J, et al. Erratum: in-depth, proteomic analysis of nasal secretions from patients with chronic rhinosinusitis and nasal polyps[J]. Allergy Asthma Immunol Res, 2020, 12(4): 744. doi:10.4168/aair.2020.12.4.744. [18] Clancy DM, Henry CM, Sullivan GP, et al. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines[J]. FEBS J, 2017, 284(11): 1712-1725. doi:10.1111/febs.14075. [19] Teufelberger AR, Nordengrün M, Braun H, et al. The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D[J]. J Allergy Clin Immunol, 2018, 141(2): 549-559. doi:10.1016/j.jaci.2017.05.004. [20] Wang H, Li ZY, Jiang WX, et al. The activation and function of IL-36γ in neutrophilic inflammation in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2018, 141(5): 1646-1658. doi:10.1016/j.jaci.2017.12.972. [21] Jasper AE, McIver WJ, Sapey E, et al. Understanding the role of neutrophils in chronic inflammatory airway disease[J]. F1000Res, 2019,26: 8. doi:10.12688/f1000research.18411.1. [22] Delemarre T, Holtappels G, de Ruyck N, et al. A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2021, 147(1): 179-188. doi:10.1016/j.jaci.2020.08.036. [23] Hwang JW, Kim JH, Kim HJ, et al. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier[J]. Clin Exp Allergy, 2019, 49(10): 1306-1320. doi:10.1111/cea.13448. [24] Cao YJ, Chen FH, Sun YQ, et al. LL-37 promotes neutrophil extracellular trap formation in chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2019, 49(7): 990-999. doi:10.1111/cea.13408. [25] Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death[J]. Science, 2013, 342(6160): 863-866. doi:10.1126/science.1242255. [26] Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, et al. Neutrophil extracellular traps and its implications in inflammation: an overview[J]. Front Immunol, 2017, 8: 81. doi:10.3389/fimmu.2017.00081. [27] Dicker AJ, Crichton ML, Pumphrey EG, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2018, 141(1): 117-127. doi:10.1016/j.jaci.2017.04.022. [28] Gevaert E, Delemarre T, de Volder J, et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis[J]. J Allergy Clin Immunol, 2020, 145(1): 427-430.e4. doi:10.1016/j.jaci.2019.08.027. [29] Toussaint M, Jackson DJ, Swieboda D, et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation[J]. Nat Med, 2017, 23(6): 681-691. doi:10.1038/nm.4332. [30] Sun B, Zhu LN, Tao YL, et al. Characterization and allergic role of IL-33-induced neutrophil polarization[J]. Cell Mol Immunol, 2018, 15(8): 782-793. doi:10.1038/cmi.2017.163. [31] Watelet JB, Demetter P, Claeys C, et al. Neutrophil-derived metalloproteinase-9 predicts healing quality after sinus surgery[J]. Laryngoscope, 2005, 115(1): 56-61. doi:10.1097/01.mlg.0000150674.30237.3f. [32] Kim DK, Lim HS, Eun KM, et al. Subepithelial neutrophil infiltration as a predictor of the surgical outcome of chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2021, 59(2): 173-180. doi:10.4193/Rhin20.373. [33] Delemarre T, de Ruyck N, Holtappels G, et al. Unravelling the expression of interleukin-9 in chronic rhinosinusitis: a possible role for Staphylococcus aureus[J]. Clin Transl Allergy, 2020, 10(1): 41. doi:10.1186/s13601-020-00348-5. [34] Klion AD, Ackerman SJ, Bochner BS. Contributions of eosinophils to human health and disease[J]. Annu Rev Pathol, 2020, 15: 179-209. doi:10.1146/annurev-pathmechdis-012419-032756. [35] Renz H, Bachert C, Berek C, et al. Physiology and pathology of eosinophils: recent developments: summary of the focus workshop organized by DGAKI[J]. Scand J Immunol, 2021, 93(6): e13032. doi:10.1111/sji.13032. [36] Wechsler ME, Munitz A, Ackerman SJ, et al. Eosinophils in health and disease: a state-of-the-art review[J]. Mayo Clin Proc, 2021, 96(10): 2694-2707. doi:10.1016/j.mayocp.2021.04.025. [37] Dupuch V, Tridon A, Ughetto S, et al. Activation state of circulating eosinophils in nasal polyposis[J]. Int Forum Allergy Rhinol, 2018, 8(5): 584-591. doi:10.1002/alr.22079. [38] Soragni A, Yousefi S, Stoeckle C, et al. Toxicity of eosinophil MBP is repressed by intracellular crystallization and promoted by extracellular aggregation[J]. Mol Cell, 2015, 57(6): 1011-1021. doi:10.1016/j.molcel.2015.01.026. [39] Bochner BS, Stevens WW. Biology and function of eosinophils in chronic rhinosinusitis with or without nasal polyps[J]. Allergy Asthma Immunol Res, 2021, 13(1): 8-22. doi:10.4168/aair.2021.13.1.8. [40] Yoshimura T, Yoshikawa M, Otori N, et al. Correlation between the prostaglandin D(2)/E(2)ratio in nasal polyps and the recalcitrant pathophysiology of chronic rhinosinusitis associated with bronchial asthma[J]. Allergol Int, 2008, 57(4): 429-436. doi:10.2332/allergolint.o-08-545. [41] 李春花, 刘肖, 刘红兵. 半乳糖凝集素10与慢性鼻窦炎伴鼻息肉[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 106-111. doi:10.6040/j.issn.1673-3770.0. 2020.163. LI Chunhua, LIU Xiao, LIU Hongbing. Galectin-10 and chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 106-111. doi:10.6040/j.issn.1673-3770.0. 2020.163. [42] Rodríguez-Alcázar JF, Ataide MA, Engels G, et al. Charcot-Leyden crystals activate the NLRP3 inflammasome and cause IL-1β inflammation in human macrophages[J]. J Immunol, 2019, 202(2): 550-558. doi:10.4049/jimmunol.1800107. [43] Persson EK, Verstraete K, Heyndrickx I, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment[J]. Science, 2019, 364(6442): eaaw4295. doi:10.1126/science.aaw4295. [44] Gonzalez-Gil A, Li TA, Porell RN, et al. Isolation, identification, and characterization of the human airway ligand for the eosinophil and mast cell immunoinhibitory receptor Siglec-8[J]. J Allergy Clin Immunol, 2021, 147(4): 1442-1452. doi:10.1016/j.jaci.2020.08.001. [45] 陶丹丹, 董红军, 褚云锋, 等. 慢性鼻-鼻窦炎伴鼻息肉患者组织嗜酸性粒细胞与嗅觉功能障碍的相关性研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 16-20. doi:10.6040/j.issn.1673-3770.0.2019.388. TAO Dandan, DONG Hongjun, CHU Yunfeng, et al. Correlation between eosinophils and olfactory dysfunction in patients with CRSwNP after nasal operation[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 16-20. doi:10.6040/j.issn.1673-3770.0.2019.388. [46] Hwang CS, Park SC, Cho HJ, et al. Eosinophil extracellular trap formation is closely associated with disease severity in chronic rhinosinusitis regardless of nasal polyp status[J]. Sci Rep, 2019, 9(1): 8061. doi:10.1038/s41598-019-44627-z. [47] DeConde AS, Mace JC, Levy JM, et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis[J]. Laryngoscope, 2017, 127(3): 550-555. doi:10.1002/lary.26391. [48] Laidlaw TM, Prussin C, Panettieri RA, et al. Dexpramipexole depletes blood and tissue eosinophils in nasal polyps with no change in polyp size[J]. Laryngoscope, 2019, 129(2): E61-E66. doi:10.1002/lary.27564. [49] de Volder J, Vereecke L, Joos G, et al. Targeting neutrophils in asthma: a therapeutic opportunity? [J]. Biochem Pharmacol, 2020, 182: 114292. doi:10.1016/j.bcp.2020.114292. [50] Wen WP, Liu WL, Zhang L, et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy[J]. J Allergy Clin Immunol, 2012, 129(6): 1522-1528.e5. doi:10.1016/j.jaci.2012.01.079. [51] Wei Y, Zhang J, Wu XM, et al. Activated pyrin domain containing 3(NLRP3)inflammasome in neutrophilic chronic rhinosinusitis with nasal polyps(CRSwNP)[J]. J Allergy Clin Immunol, 2020, 145(3): 1002-1005.e16. doi:10.1016/j.jaci.2020.01.009. [52] Derycke L, Eyerich S, van Crombruggen K, et al. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps[J]. PLoS One, 2014, 9(6): e97581. doi:10.1371/journal.pone.0097581. [53] Xue LZ, Fergusson J, Salimi M, et al. Prostaglandin D2 and leukotriene E4 synergize to stimulate diverse TH2 functions and TH2 cell/neutrophil crosstalk[J]. J Allergy Clin Immunol, 2015, 135(5): 1358-1366.e1-11. doi:10.1016/j.jaci.2014.09.006. [54] Moore WC, Hastie AT, Li XN, et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis[J]. J Allergy Clin Immunol, 2014, 133(6): 1557-1563.e5. doi:10.1016/j.jaci.2013.10.011. [55] Succar EF, Li P, Ely KA, et al. Neutrophils are underrecognized contributors to inflammatory burden and quality of life in chronic rhinosinusitis[J]. Allergy, 2020, 75(3): 713-716. doi:10.1111/all.14071. [56] Lou HF, Meng YF, Piao YS, et al. Cellular phenotyping of chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2016, 54(2): 150-159. doi:10.4193/Rhino15.271. [57] Kim DK, Kim JY, Han YE, et al. Elastase-positive neutrophils are associated with refractoriness of chronic rhinosinusitis with nasal polyps in an Asian population[J]. Allergy Asthma Immunol Res, 2020, 12(1): 42-55. doi:10.4168/aair.2020.12.1.42. [58] Chalmers JD, Haworth CS, Metersky ML, et al. Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis[J]. N Engl J Med, 2020, 383(22): 2127-2137. doi:10.1056/NEJMoa2021713. [59] Gurrola J II, Borish L. Chronic rhinosinusitis: Endotypes, biomarkers, and treatment response[J]. J Allergy Clin Immunol, 2017, 140(6): 1499-1508. doi:10.1016/j.jaci.2017.10.006. [60] Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps(liberty np sinus-24 and liberty np sinus-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials[J]. Lancet, 2019, 394(10209): 1638-1650. doi:10.1016/S0140-6736(19)31881-1. [61] Pauwels B, Jonstam K, Bachert C. Emerging biologics for the treatment of chronic rhinosinusitis[J]. Expert Rev Clin Immunol, 2015, 11(3): 349-361. doi:10.1586/1744666X.2015.1010517. [62] de Corso E, Bellocchi G, de Benedetto M, et al. Biologics for severe uncontrolled chronic rhinosinusitis with nasal polyps: a change management approach. Consensus of the Joint Committee of Italian Society of Otorhinolaryngology on biologics in rhinology[J]. Acta Otorhinolaryngol Ital, 2022, 42(1): 1-16. doi:10.14639/0392-100X-N1614. |
[1] | 张钰曲毅. 眼弓形体病的发病机制及防治研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 70-76. |
[2] | 宋晴 宋西成. 安罗替尼联合治疗在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 106-112. |
[3] | 张可人, 雷春燕, 张美霞. 眼睑松弛综合征伴阻塞性睡眠呼吸暂停1例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 125-128. |
[4] | 马静远, 武天义, 孙占伟, 王卫卫, 李世超, 王广科. 鼻腔鼻窦内翻性乳头状瘤与外周血炎症标志物的相关性研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 35-39. |
[5] | 王媚 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128. |
[6] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[7] | 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19. |
[8] | 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29. |
[9] | 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35. |
[10] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[11] | 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. |
[12] | 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55. |
[13] | 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70. |
[14] | 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77. |
[15] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
|