山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (3): 111-117.doi: 10.6040/j.issn.1673-3770.0.2022.147
• 综述 • 上一篇
索安奇1,杨欣欣2
SUO Anqi1, YANG Xinxin2
摘要: 头颈部鳞状细胞癌(head and neck squamous cell carcinoma, HNSCC)是全球最常见的6种癌症之一,很多晚期患者因肿瘤复发或对化疗药物耐药而死亡。努力开拓治疗HNSCC新策略,对于HNSCC患者的预后具有重大意义。线粒体自噬是一种选择性的宏观自噬形式,通过相关通路蛋白或者药物调控减轻氧化应激和预防癌的发生,又或者在一些不利条件下促进肿瘤细胞的存活。目前大量研究证明,线粒体自噬是控制癌细胞质量的关键因素,与肿瘤发生发展密切相关。线粒体功能障碍促进细胞癌变;线粒体自噬功能失调可诱导癌细胞凋亡;新型药物的出现开拓了靶向线粒体治疗肿瘤的新方法,线粒体自噬对于肿瘤的防治展现出巨大潜能。论文将从线粒体自噬的调控机制、线粒体自噬与肿瘤的关系、HNSCC防治及临床耐药性等方面进行综述,旨在为HNSCC治疗提供新的方向和靶点。
中图分类号:
[1] 胡晨, 薛继尧, 龚洪立, 等. 喉鳞状细胞癌局部复发影响因素及预后分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(9): 773-776. doi:10.13201/j.issn.2096-7993.2020.09.002 HU Chen, XUE Jiyao, GONG Hongli, et al. Analysis of correlation factors and prognosis of local recurrence of laryngeal squamous cell carcinoma[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(9): 773-776. doi:10.13201/j.issn.2096-7993.2020.09.002 [2] Luo M, Sun G, Sun JW. miR-196b affects the progression and prognosis of human LSCC through targeting PCDH-17[J]. Auris Nasus Larynx, 2019, 46(4): 583-592. doi:10.1016/j.anl.2018.10.020 [3] 王媚, 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128. doi: 10.6040/j.issn.1673-3770.0.2021.388 WANG Mei, LI Zhihai. Laryngeal cancer stem cells: potential therapeutic targets for overcoming multidrug resistance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 120-128. doi: 10.6040/j.issn.1673-3770.0.2021.388 [4] Liu C, Yu Z, Huang S, et al. Combined identification of three miRNAs in serum as effective diagnostic biomarkers for HNSCC[J]. EBioMedicine, 2019, 50: 135-143. doi:10.1016/j.ebiom.2019.11.016 [5] Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview[J]. Int J Cancer, 2021, 5(149):778-789. doi:10.1002/ijc.33588 [6] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660 [7] Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance[J]. Curr Biol, 2018, 28(4): R170-R185. doi:10.1016/j.cub.2018.01.004 [8] Fan P, Xie XH, Chen CH, et al. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy[J]. DNA Cell Biol, 2019, 38(1): 10-22. doi:10.1089/dna.2018.4348 [9] Moro L. Mitochondrial dysfunction in aging and cancer[J]. J Clin Med, 2019, 8(11): 1983. doi:10.3390/jcm8111983 [10] 李丹, 李翀, 蒋敬庭. 自噬在肿瘤发生与发展中的调控机制[J]. 临床肿瘤学杂志, 2013, 18(6): 561-564. doi:10.3969/j.issn.1009-0460.2013.06.019 LI Dan, LI Chong, JIANG Jingting. The regulatory mechanism of autophagy in tumorigenesis and development[J]. Chinese Clinical Oncology, 2013, 18(6): 561-564. doi:10.3969/j.issn.1009-0460.2013.06.019 [11] Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1/2): 11-42. doi:10.1016/j.cell.2018.09.048 [12] Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy[J]. J Cell Biol, 2010, 189(2): 211-221. doi:10.1083/jcb.200910140 [13] Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease[J]. Neuron, 2015, 85(2): 257-273. doi:10.1016/j.neuron.2014.12.007 [14] Skoda J, Borankova K, Jansson PJ, et al. Pharmacological targeting of mitochondria in cancer stem cells: an ancient organelle at the crossroad of novel anti-cancer therapies[J]. Pharmacol Res, 2019, 1(139): 298-313. doi:10.1016/j.phrs.2018.11.020 [15] Seirafi M, Kozlov G, Gehring K. Parkin structure and function[J]. FEBS J, 2015, 282(11): 2076-2088. doi:10.1111/febs.13249 [16] Lee JY, Nagano Y, Taylor JP, et al. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy[J]. J Cell Biol, 2010, 189(4): 671-679. doi:10.1083/jcb.201001039 [17] 路云萍, 李玲玉, 景新颖, 等. Prx1调控PINK1/Parkin介导的线粒体自噬在实验性口腔黏膜癌变中的作用[J]. 北京口腔医学, 2021, 29(1): 1-6. LU Yunping, LI Lingyu, JING Xinying, et al. Peroxiredoxin 1 regulates PINK1/parkin-mediated mitophagy in 4NQO-induced oral carcinogenesis[J]. Beijing Journal of Stomatology, 2021, 29(1): 1-6. [18] Hoshino A, Ariyoshi M, Okawa Y, et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes[J]. PNAS, 2014, 111(8): 3116-3121. doi:10.1073/pnas.1318951111 [19] 何云凌. 低氧下BNIP3翻译后修饰对线粒体自噬的调控作用[C]. 北京:军事科学院, 2018. [20] Regula KM, Ens K, Kirshenbaum LA. Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes[J]. Circ Res, 2002, 91(3): 226-231. doi:10.1161/01.res.0000029232.42227.16 [21] Hamacher-Brady A, Brady NR, Logue SE, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy[J]. Cell Death Differ, 2007, 14(1): 146-157. doi:10.1038/sj.cdd.4401936 [22] Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. J Biol Chem, 2008, 283(16): 10892-10903. doi:10.1074/jbc.M800102200 [23] Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains[J]. Mol Cell Biol, 2009, 29(10): 2570-2581. doi:10.1128/MCB.00166-09 [24] Semenza GL. Hypoxia-inducible factors in physiology and medicine[J]. Cell, 2012, 148(3): 399-408. doi:10.1016/j.cell.2012.01.021 [25] Hanna RA, Quinsay MN, Orogo AM, et al. Microtubule-associated protein 1 light chain 3(LC3)interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J]. J Biol Chem, 2012, 287(23): 19094-19104. doi:10.1074/jbc.M111.322933 [26] Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep, 2010, 11(1): 45-51. doi:10.1038/embor.2009.256 [27] Shaid S, Brandts CH, Serve H, et al. Ubiquitination and selective autophagy[J]. Cell Death Differ, 2013, 20(1): 21-30. doi:10.1038/cdd.2012.72 [28] 郭倩, 王蓓. 低氧诱导线粒体自噬的机制及其在相关疾病中的研究进展[J]. 国际呼吸杂志, 2018, 38(8): 610-614. doi:10.3760/cma.j.issn.1673-436X.2018.08.009 GUO Qian, WANG Bei. Mechanisms of hypoxia-induced mitophagy and its advances in related diseases[J]. Int J Respir, 2018, 38(8): 610-614. doi:10.3760/cma.j.issn.1673-436X.2018.08.009 [29] You L, Wang Z, Li H, et al. The role of STAT3 in autophagy[J]. Autophagy, 2015, 11(5): 729-739. doi:10.1080/15548627.2015.1017192 [30] Sun W, Wang B, Qu XL, et al. Metabolism of reactive oxygen species in osteosarcoma and potential treatment applications[J]. Cells, 2019, 9(1): 87. doi:10.3390/cells9010087 [31] 唐笑怡, 张攀, 王凯燕, 等. 线粒体功能与口腔鳞状细胞癌关系的研究进展[J]. 口腔疾病防治, 2022, 30(3): 212-216. doi:10.12016/j.issn.2096-1456.2022.03.009 TANG Xiaoyi, ZHANG Pan, WANG Kaiyan, et al. Research progress on the relationship between mitochondrial function and oral squamous cell carcinoma[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2022, 30(3): 212-216. doi:10.12016/j.issn.2096-1456.2022.03.009 [32] Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene[J]. J Clin Invest, 2003, 112(12): 1809-1820. doi:10.1172/JCI20039 [33] Pirtoli L, Cevenini G, Tini P, et al. The prognostic role of Beclin 1 protein expression in high-grade gliomas[J]. Autophagy, 2009, 5(7): 930-936. doi:10.4161/auto.5.7.9227 [34] Ding ZB, Shi YH, Zhou J, et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma[J]. Cancer Res, 2008, 68(22): 9167-9175. doi:10.1158/0008-5472.CAN-08-1573 [35] Yu M, Gou WF, Zhao S, et al. Beclin 1 expression is an independent prognostic factor for gastric carcinomas[J]. Tumour Biol, 2013, 34(2): 1071-1083. doi:10.1007/s13277-013-0648-8 [36] 黄莉. 自噬相关基因Beclin 1在喉鳞状细胞癌中的表达及意义[D]. 长沙: 中南大学, 2008. [37] Liu K, Lee J, Kim JY, et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells[J]. Mol Cell, 2017, 68(2): 281-292.e5. doi:10.1016/j.molcel.2017.09.022 [38] 刘腾飞. MS-275联合顺铂对食管鳞癌的抗肿瘤作用[D]. 郑州: 郑州大学, 2019. [39] Naik PP, Mukhopadhyay S, Panda PK, et al. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD44, ABCB1 and ADAM17 in oral squamous cell carcinoma[J]. Cell Prolif, 2018, 51(1): e12411. doi:10.1111/cpr.12411 [40] 胡静, 苏荣健, 赵子明, 等. 自噬介导人舌鳞癌细胞对顺铂耐药的作用及其机制研究[J]. 医学与哲学(B), 2015, 36(6): 65-67. HU Jing, SU Rongjian, ZHAO Ziming, et al. The study on the role of human tongue squamous cell cancer cells resistance to cisplatin mediated autophagy and its mechanism[J]. Medicine & Philosophy(B), 2015, 36(6): 65-67. [41] 金香顺, 王东旭, 尤涛. 抑制自噬可以增加mTOR抑制剂AZD8055引起的喉癌细胞株Hep-2的凋亡[J]. 中国老年学杂志, 2015, 35(14): 3847-3849. doi: 10.3969/j.issn.1005-9202.2015.14.023 [42] 王荣坤, 林简. 3-甲基腺嘌呤增强ALA-PDT对皮肤鳞状细胞癌A431细胞的杀伤作用[J]. 中国皮肤性病学杂志, 2020, 34(6): 627-633. doi:10.13735/j.cjdv.1001-7089.201908164 WANG Rongkun, LIN Jian. 3-methyladenine enhances the killing effect of ALA-PDT on cutaneous squamous cell carcinoma A431 cells[J]. The Chinese Journal of Dermatovenereology, 2020, 34(6): 627-633. doi:10.13735/j.cjdv.1001-7089.201908164 [43] 谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287. doi:10.3971/j.issn.1000-8578.2021.21.1117 XIE Zhanghong, HUA Qingquan. Research progress of ferroptosis in head and neck squamous cell carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(4): 282-287. doi:10.3971/j.issn.1000-8578.2021.21.1117 |
[1] | 艾自琴,李军政. 免疫疫苗在头颈部鳞状细胞癌中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 143-150. |
[2] | 李孟婷,何书喜,王华. 炎症因子在圆锥角膜中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 151-158. |
[3] | 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. |
[4] | 张依,王文俊,杨安怀. SIRT1激动剂白藜芦醇在眼部疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 151-156. |
[5] | 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130. |
[6] | 于克娜,孙凯月,张杰,金鹏. 西妥昔单抗治疗头颈部鳞状细胞癌差异表达基因的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 117-124. |
[7] | 宋凡,黄炜峻,许华俊,关建,易红良. 阻塞性睡眠呼吸暂停综合征患者颈动脉弹性与氧化应激反应的关系[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 99-104. |
[8] | 吴静,刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102. |
[9] | 张转,刘涛,白治丽,周长明. 氧化应激与噪音性聋发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 101-103. |
[10] | 李小波,曹忠胜,辛洁,谢辰,陈锐. 罗格列酮对间歇性低氧小鼠氧化应激及认知功能的作用研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 45-49. |
[11] | 李延忠. 肥胖与阻塞性睡眠呼吸暂停[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 1-4. |
[12] | 李兰根, 伟伟, 张玉凤, 格日乐图, 杨佳, 张艳梅. SIRT1抗视网膜色素上皮细胞氧化应激作用的实验研究[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 56-59. |
[13] | 李国俊1,2,潘新良3,雷大鹏3,陈兴明4,陈晓红5,宋西成6. 口咽部鳞状细胞癌与性行为和人乳头状瘤病毒感染[J]. 山东大学耳鼻喉眼学报, 2013, 27(1): 1-7. |
[14] | 毕宏生,李树杰,崔 彦,王 慧 . 茶多酚防治STZ诱导的大鼠糖尿病性白内障的机制[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 1-05 . |
|