山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (4): 140-148.doi: 10.6040/j.issn.1673-3770.0.2024.181

• 综述 • 上一篇    

细胞焦亡在耳鼻咽喉科疾病中的研究进展

张静祎1,2,董湘依3,牟亚魁1,宋西成1   

  1. 1.青岛大学附属烟台毓璜顶医院 耳鼻咽喉头颈外科, 山东 烟台 264000;
    2.山东省文登整骨医院 耳鼻咽喉科, 山东 威海 264400;
    3.烟台市牟平区中医医院 耳鼻喉科, 山东 烟台 264100
  • 发布日期:2024-07-09
  • 通讯作者: 宋西成. E-mail:drxchsong@163.com

Research progress on pyroptosis in otorhinolaryngology diseases

ZHANG Jingyi1,2, DONG Xiangyi3, MU Yakui1, SONG Xicheng1   

  1. 1. Department of Otorhinolaryngology & Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospita1 of Qingdao University, Yantai 264000, Shandong, China2. Department of Otorhinolaryngology, The Wendeng Osteopath Hospital, Weihai 264400, Shandong, China3. Department of Otolaryngology, Yantai Muping District Hospital of Chinese Medicine, Yantai 264100, Shandong, China
  • Published:2024-07-09

摘要: 细胞焦亡作为程序性细胞死亡方式中的一种,其过程离不开caspase家族和gasdermin家族,同时伴随着炎性反应的发生,其主要过程是caspase家族被激活后作用于gasdermin家族N端结构,通过易位插入细胞膜表面、寡聚等方式使得细胞膜裂孔形成后体积逐渐膨胀,最终细胞膜破裂,细胞里面的物质从细胞内释放出来,诱发机体产生强烈的炎症性反应。近几年,细胞焦亡为耳鼻咽喉科研究的热点方向之一。本文主要综述细胞焦亡的发现历程、分子机制及其在慢性鼻窦炎、变应性鼻炎、鼻咽癌、听力损失、头颈部肿瘤等耳鼻咽喉科常见疾病中的研究进展。

关键词: 细胞焦亡, 炎症小体, 慢性鼻窦炎, 变应性鼻炎, 鼻咽癌, 听力损失, 头颈部肿瘤

Abstract: As one of the programmed cell death modes, the process of cell pyroptosis cannot be separated from caspase family and gasdermin family, and accompanied by the occurrence of inflammatory response, the main process is that the caspase family is activated, and then acts on the N-terminal structure of gasdermin family, which causes the cell membrane to be ruptured through translocation insertion on the surface of the cell membrane, oligomerisation, etc. The cell membrane is then activated by the caspase family, and the caspases are activated. The cell membrane is then activated by the caspase family and the caspases are activated. After the formation of lacunae, the volume gradually expands and eventually the cell membrane ruptures and the substances inside the cell are released from the cell, triggering a strong inflammatory response in the organism. In recent years, cell death has become one of the hot spots in ENT research. In this article, we review the discovery process, molecular mechanism of cellular pyroptosis and its research progress in common otolaryngological diseases such as chronic sinusitis, allergic rhinitis, nasopharyngeal carcinoma, hearing loss, head and neck tumours, and so on.

Key words: Pyroptosis, Inflammatory bodies, Chronic sinusitis, Allergic rhinitis, Nasopharyngeal carcinoma, Hearing loss, Head and neck tumor

中图分类号: 

  • R76
[1] Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015[J]. Cell Death Differ, 2015, 22(1): 58-73. doi:10.1038/cdd.2014.137
[2] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. doi:10.1038/s41418-017-0012-4
[3] Tuncer M, Alcan S. Pyroptosis: a new therapeutic strategy in cancer[J]. Mol Biol Rep, 2023, 50(7): 6191-6200. doi:10.1007/s11033-023-08482-6
[4] Zhou HQ, Zhang W, Qin DX, et al. Activation of NLRP3 inflammasome contributes to the inflammatory response to allergic rhinitis via macrophage pyroptosis[J]. Int Immunopharmacol, 2022, 110: 109012. doi:10.1016/j.intimp.2022.109012
[5] Coll RC, Schroder K, Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci, 2022, 43(8): 653-668. doi:10.1016/j.tips.2022.04.003
[6] You RX, He XL, Zeng ZT, et al. Pyroptosis and its role in autoimmune disease: a potential therapeutic target[J]. Front Immunol, 2022, 13: 841732. doi:10.3389/fimmu.2022.841732
[7] Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382): 167-169. doi:10.1038/358167a0
[8] Hilbi H, Moss JE, Hersh D, et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB[J]. J Biol Chem, 1998, 273(49): 32895-32900. doi:10.1074/jbc.273.49.32895
[9] Cookson BT, Brennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3): 113-114. doi:10.1016/s0966-842x(00)01936-3
[10] Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526(7575): 666-671. doi:10.1038/nature15541
[11] Shi JJ, Gao WQ, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. doi:10.1016/j.tibs.2016.10.004
[12] Zhou ZW, He HB, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494): eaaz7548. doi:10.1126/science.aaz7548
[13] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157(5): 1013-1022. doi:10.1016/j.cell.2014.04.007
[14] An SB, Hu HY, Li YS, et al. Pyroptosis plays a role in osteoarthritis[J]. Aging Dis, 2020, 11(5): 1146-1157. doi:10.14336/AD.2019.1127
[15] Silke J, Vince J. IAPs and cell death[J]. Curr Top Microbiol Immunol, 2017, 403: 95-117. doi:10.1007/82_2016_507
[16] Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions[J]. Cell, 2016, 165(4): 792-800. doi:10.1016/j.cell.2016.03.046
[17] Yu JH, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells[J]. Cell Death Dis, 2019, 10(3): 193. doi:10.1038/s41419-019-1441-4
[18] Jiang MX, Qi L, Li LS, et al. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer[J]. Cell Death Discov, 2020, 6: 112. doi:10.1038/s41420-020-00349-0
[19] Xia WW, Li YY, Wu MY, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139. doi:10.1038/s41419-021-03431-2
[20] Zhang ZB, Zhang Y, Xia SY, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799): 415-420. doi:10.1038/s41586-020-2071-9
[21] Sarhan J, Liu BC, Muendlein HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. Proc Natl Acad Sci USA, 2018, 115(46): E10888-E10897. doi:10.1073/pnas.1809548115
[22] Zheng DP, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms[J]. Cell Discov, 2020, 6: 36. doi:10.1038/s41421-020-0167-x
[23] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464. doi:10.4193/Rhin20.600
[24] Gelardi M, Giancaspro R, Ronca G, et al. Correlation between chronic rhinosinusitis with nasal polyposis(CRSwNP)severity and asthma control[J]. Am J Otolaryngol, 2023, 44(2): 103701. doi:10.1016/j.amjoto.2022.103701
[25] Billingham LK, Stoolman JS, Vasan K, et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation[J]. Nat Immunol, 2022, 23(5): 692-704. doi:10.1038/s41590-022-01185-3
[26] Lin H, Li ZP, Lin D, et al. Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Inflammation, 2016, 39(6): 2045-2052. doi:10.1007/s10753-016-0442-z
[27] Li Y, Chang LH, Huang WQ, et al. IL-17A mediates pyroptosis via the ERK pathway and contributes to steroid resistance in CRSwNP[J]. J Allergy Clin Immunol, 2022, 150(2): 337-351. doi:10.1016/j.jaci.2022.02.031
[28] Chang LH, Wu HT, Huang WQ, et al. IL-21 induces pyroptosis of Treg cells via Akt-mTOR-NLRP3-caspase 1 axis in eosinophilic chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2023, 152(3): 641-655.e14. doi:10.1016/j.jaci.2023.04.013
[29] 王睿智, 朱锦祥, 方彩珊, 等. 脂多糖通过NLRP3诱导并促进慢性鼻窦炎人鼻黏膜上皮细胞焦亡[J]. 免疫学杂志, 2023, 39(5): 409-419. doi:10.13431/j.cnki.immunol.j.20230053 WANG Ruizhi, ZHU Jinxiang, FANG Caishan, et al. Lipopolysaccharide induces and promotes pyroptosis of human nasal epithelial cells through NLRP3 in chronic rhinosinusitis[J]. Immunological Journal, 2023, 39(5): 409-419. doi:10.13431/j.cnki.immunol.j.20230053
[30] Wang RZ, Wang YC, Liu H, et al. Platycodon D protects human nasal epithelial cells from pyroptosis through the Nrf2/HO-1/ROS signaling cascade in chronic rhinosinusitis[J]. Chin Med, 2024, 19(1): 40. doi:10.1186/s13020-024-00897-y
[31] Greiner AN, Hellings PW, Rotiroti G, et al. Allergic rhinitis[J]. Lancet, 2011, 378(9809): 2112-2122. doi:10.1016/s0140-6736(11)60130-x
[32] Bro(·overz)ek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma(ARIA)guidelines-2016 revision[J]. J Allergy Clin Immunol, 2017, 140(4): 950-958. doi:10.1016/j.jaci.2017.03.050
[33] Zhang Y, Zhang L. Increasing prevalence of allergic rhinitis in China[J]. Allergy Asthma Immunol Res, 2019, 11(2): 156-169. doi:10.4168/aair.2019.11.2.156
[34] Katelaris CH, Lee BW, Potter PC, et al. Prevalence and diversity of allergic rhinitis in regions of the world beyond Europe and North America[J]. Clin Exp Allergy, 2012, 42(2): 186-207. doi:10.1111/j.1365-2222.2011.03891.x
[35] Kim RY, Pinkerton JW, Essilfie AT, et al. Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma[J]. Am J Respir Crit Care Med, 2017, 196(3): 283-297. doi:10.1164/rccm.201609-1830OC
[36] 魏亚宁, 仇惠莺. NLRP3炎症小体活化促进上皮细胞焦亡诱导变应性鼻炎[J]. 免疫学杂志, 2021, 37(2): 140-144. doi:10.13431/j.cnki.immunol.j.20210021 WEI Yaning, QIU Huiying. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis[J]. Immunological Journal, 2021, 37(2): 140-144. doi:10.13431/j.cnki.immunol.j.20210021
[37] Abais JM, Xia M, Zhang Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector?[J]. Antioxid Redox Signal, 2015, 22(13): 1111-1129. doi:10.1089/ars.2014.5994
[38] Li WB, Deng MH, Loughran PA, et al. LPS induces active HMGB1 release from hepatocytes into exosomes through the coordinated activities of TLR4 and caspase-11/GSDMD signaling[J]. Front Immunol, 2020, 11: 229. doi:10.3389/fimmu.2020.00229
[39] Wang Y, Chen S, Yang PL, et al. AIM2 inflammasome activation may mediate high mobility group box 1 release in murine allergic rhinitis[J]. Braz J Otorhinolaryngol, 2022, 88(6): 925-931. doi:10.1016/j.bjorl.2020.12.014
[40] Han MW, Kim SH, Oh I, et al. Serum IL-1β can be a biomarker in children with severe persistent allergic rhinitis[J]. Allergy Asthma Clin Immunol, 2019, 15: 58. doi:10.1186/s13223-019-0368-8
[41] Sanders NL, Mishra A. Role of interleukin-18 in the pathophysiology of allergic diseases[J]. Cytokine Growth Factor Rev, 2016, 32: 31-39. doi:10.1016/j.cytogfr.2016.07.001
[42] Subbarao Malireddi RKS, Gurung P, Mavuluri J, et al. TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation[J]. J Exp Med, 2018, 215(4): 1023-1034. doi:10.1084/jem.20171922
[43] Zhang WT, Ba GY, Tang R, et al. Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model[J]. Int Immunopharmacol, 2020, 83: 106394. doi:10.1016/j.intimp.2020.106394
[44] Xiao LF, Jiang L, Hu Q, et al. MicroRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting Nlrp3[J]. Cell Physiol Biochem, 2017, 42(3): 901-912. doi:10.1159/000478645
[45] Hu WX, Zhou WY, Zhu XL, et al. Anti-interleukin-1 beta/tumor necrosis factor-alpha IgY antibodies reduce pathological allergic responses in guinea pigs with allergic rhinitis[J]. Mediators Inflamm, 2016, 2016: 3128182. doi:10.1155/2016/3128182
[46] Zasona Z, Flis E, Wilk MM, et al. Caspase-11 promotes allergic airway inflammation[J]. Nat Commun, 2020, 11(1): 1055. doi:10.1038/s41467-020-14945-2
[47] Wong KCW, Hui EP, Lo KW, et al. Nasopharyngeal carcinoma: an evolving paradigm[J]. Nat Rev Clin Oncol, 2021, 18(11): 679-695. doi:10.1038/s41571-021-00524-x
[48] 于明艳, 王婷婷, 杜鸣宇, 等. 基于SEER数据库的大样本人群中UICC/AJCC第8版分期鼻咽癌Ⅲ期预后分析[J]. 肿瘤学杂志, 2023, 29(6): 502-510. doi:10.11735/j.issn.1671-170X.2023.06.B009 YU Mingyan, WANG Tingting, DU Mingyu, et al. Prognosis analysis of nasopharyngeal carcinoma for stage Ⅲ based on UICC/AJCC 8th edition staging system in large sample populations from SEER database[J]. Journal of Chinese Oncology, 2023, 29(6): 502-510. doi:10.11735/j.issn.1671-170X.2023.06.B009
[49] Shi M, Du JN, Shi JJ, et al. Ferroptosis-related gene ATG5 is a novel prognostic biomarker in nasopharyngeal carcinoma and head and neck squamous cell carcinoma[J]. Front Bioeng Biotechnol, 2022, 10: 1006535. doi:10.3389/fbioe.2022.1006535
[50] Tourkochristou E, Aggeletopoulou I, Konstantakis C, et al. Role of NLRP3 inflammasome in inflammatory bowel diseases[J]. World J Gastroenterol, 2019, 25(33): 4796-4804. doi:10.3748/wjg.v25.i33.4796
[51] 汤俊照, 汪亦品. NLRP3在鼻咽癌中的表达及其临床意义[J]. 皖南医学院学报, 2016, 35(4): 374-377. doi:10.3969/j.issn.1002-0217.2016.04.021 TANG Junzhao, WANG Yipin. NLRP3 expression and its clinical significance in nasopharyngeal carcinoma[J]. Acta Academiae Medicinae Wannan, 2016, 35(4): 374-377. doi:10.3969/j.issn.1002-0217.2016.04.021
[52] Liou AK, Soon G, Tan L, et al. Elevated IL18 levels in Nasopharyngeal carcinoma induced PD-1 expression on NK cells in TILS leading to poor prognosis[J]. Oral Oncol, 2020, 104: 104616. doi:10.1016/j.oraloncology.2020.104616
[53] 刘霞静, 张永全, 宋业勋, 等. Caspase-1/GSDMD介导的经典细胞焦亡在紫杉醇诱导的鼻咽癌细胞死亡中的作用[J]. 肿瘤, 2021, 41(7): 475-486. doi:10.3781/j.issn.1000-7431.2021.2012-1082 LIU Xiajing, ZHANG Yongquan, SONG Yexun, et al. The role of Caspase-1/GSDMD-mediated classical pyroptosis in Taxol-induced cell death in nasopharyngeal carcinoma[J]. Tumor, 2021, 41(7): 475-486. doi:10.3781/j.issn.1000-7431.2021.2012-1082
[54] Wang XY, Li HQ, Li W, et al. The role of Caspase-1/GSDMD-mediated pyroptosis in Taxol-induced cell death and a Taxol-resistant phenotype in nasopharyngeal carcinoma regulated by autophagy[J]. Cell Biol Toxicol, 2020, 36(5): 437-457. doi:10.1007/s10565-020-09514-8
[55] Chen ZD, Xu G, Wu D, et al. Lobaplatin induces pyroptosis through regulating cIAP1/2, Ripoptosome and ROS in nasopharyngeal carcinoma[J]. Biochem Pharmacol, 2020, 177: 114023. doi:10.1016/j.bcp.2020.114023
[56] Di MP, Miao JJ, Pan QZ, et al. OTUD4-mediated GSDME deubiquitination enhances radiosensitivity in nasopharyngeal carcinoma by inducing pyroptosis[J]. J Exp Clin Cancer Res, 2022, 41(1): 328. doi:10.1186/s13046-022-02533-9
[57] Li Q, Wang M, Zhang Y, et al. BIX-01294-enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis[J]. Acta Biochim Biophys Sin, 2020, 52(10): 1131-1139. doi:10.1093/abbs/gmaa097
[58] 刘丹, 万浪, 岑瑞祥, 等. MiR-193a-3p/E2F6调控细胞焦亡在鼻咽癌中的机制研究[J]. 中国耳鼻咽喉头颈外科, 2023, 30(11): 686-692. doi:10.16066/j.1672-7002.2023.11.002 LIU Dan, WAN Lang, CEN Ruixiang, et al. Mechanistic study of miR-193a-3p/E2F6 regulation of cell pyroptosis in nasopharyngeal carcinoma[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2023, 30(11): 686-692. doi:10.16066/j.1672-7002.2023.11.002
[59] 丁一, 李昆芳, 王然, 等. 鼻咽癌组织中高表达的GSDME对TME免疫浸润和患者预后的影响[J]. 中国肿瘤生物治疗杂志, 2023, 30(6): 489-496. doi:10.3872/j.issn.1007-385x.2023.06.005 DING Yi, LI Kunfang, WANG Ran, et al. Effect of high expression of GSDME in nasopharyngeal carcinoma tissues on immune infiltration of tumor microenvironment and patient prognosis[J]. Chinese Journal of Cancer Biotherapy, 2023, 30(6): 489-496. doi:10.3872/j.issn.1007-385x.2023.06.005
[60] Wang J, Puel JL. Presbycusis: an update on cochlear mechanisms and therapies[J]. J Clin Med, 2020, 9(1): 218. doi:10.3390/jcm9010218
[61] Zeng R, Brown AD, Rogers LS, et al. Age-related loss of auditory sensitivity in the zebrafish(Danio rerio)[J]. Hear Res, 2021,403:108189. doi:10.1016/j.heares.2021.108189
[62] 周加敏, 宋玉婉, 孙岩. 细胞焦亡在老年退行性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 172-180. doi:10.6040/j.issn.1673-3770.0.2022.090 ZHOU Jiamin, SONG Yuwan, SUN Yan. Research progress of pyroptosis in senile degenerative diseases[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 172-180. doi:10.6040/j.issn.1673-3770.0.2022.090
[63] Rogers C, Fernandes-Alnemri T, Mayes L, et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death[J]. Nat Commun, 2017, 8: 14128. doi:10.1038/ncomms14128
[64] van Laer L, Huizing EH, Verstreken M, et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5[J]. Nat Genet, 1998, 20(2): 194-197. doi:10.1038/2503
[65] Wang HY, Guan J, Guan LP, et al. Further evidence for “gain-of-function” mechanism of DFNA5 related hearing loss[J]. Sci Rep, 2018, 8(1): 8424. doi:10.1038/s41598-018-26554-7
[66] 于慧柠, 郑体花, 郑庆印. 氧化应激在年龄相关性耳聋中的作用研究进展[J]. 中华耳科学杂志, 2019, 17(5): 777-782. doi:10.3969/j.issn.1672-2922.2019.05.031 YU Huining, ZHENG Tihua, ZHENG Qingyin. Oxidative stress and age-related hearing loss[J]. Chinese Journal of Otology, 2019, 17(5): 777-782. doi:10.3969/j.issn.1672-2922.2019.05.031
[67] Shi X, Qiu SW, Zhuang W, et al. NLRP3-inflammasomes are triggered by age-related hearing loss in the inner ear of mice[J]. Am J Transl Res, 2017, 9(12): 5611-5618
[68] Gu JY, Tong L, Lin X, et al. The disruption and hyperpermeability of blood-labyrinth barrier mediates cisplatin-induced ototoxicity[J]. Toxicol Lett, 2022, 354: 56-64. doi:10.1016/j.toxlet.2021.10.015
[69] Yu R, Wang K, Luo WG, et al. Knockdown and mutation of Pou4f3 gene mutation promotes pyroptosis of cochleae in cisplatin-induced deafness mice by NLRP3/caspase-3/GSDME pathway[J]. Toxicology, 2022, 482: 153368. doi:10.1016/j.tox.2022.153368
[70] Rogers C, Alnemri ES. Gasdermins in Apoptosis: new players in an Old Game[J]. Yale J Biol Med, 2019, 92(4): 603-617
[71] 李超友, 王安洋, 薛刚. 中心型肥胖与头颈癌的关系[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 120-125.doi:10.6040/j.issn.1673-3770.0.2021.137 LI Chaoyou, WANG Anyang, XUE Gang. The relationship between central obesity and head and neck cancer[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 120-125.doi:10.6040/j.issn.1673-3770.0.2021.137
[72] Miyauchi S, Kim SS, Pang J, et al. Immune modulation of head and neck squamous cell carcinoma and the tumor microenvironment by conventional therapeutics[J]. Clin Cancer Res, 2019, 25(14): 4211-4223. doi:10.1158/1078-0432.CCR-18-0871
[73] Zhang MJ, Gao W, Liu S, et al. CD38 triggers inflammasome-mediated pyroptotic cell death in head and neck squamous cell carcinoma[J]. Am J Cancer Res, 2020, 10(9): 2895-2908
[74] Cramer JD, Burtness B, Le QT, et al. The changing therapeutic landscape of head and neck cancer[J]. Nat Rev Clin Oncol, 2019, 16(11): 669-683. doi:10.1038/s41571-019-0227-z
[75] Deng HX, Wei ZY, Qiu SJ, et al. Pyroptosis patterns and immune infiltrates characterization in head and neck squamous cell carcinoma[J]. J Clin Lab Anal, 2022, 36(4): e24292. doi:10.1002/jcla.24292
[76] 高嘉敏, 姚艳丽, 王玉珏, 等. 多西他赛对头颈鳞癌细胞焦亡的影响及作用机制探讨[J]. 中国口腔颌面外科杂志, 2023, 21(2): 105-111. doi:10.19438/j.cjoms.2023.02.001 GAO Jiamin, YAO Yanli, WANG Yujue, et al. Effect of docetaxel on cell pyroptosis of head and neck squamous cell carcinoma and its mechanism[J]. China Journal of Oral and Maxillofacial Surgery, 2023, 21(2): 105-111. doi:10.19438/j.cjoms.2023.02.001
[77] Rioja-Blanco E, Arroyo-Solera I, álamo P, et al. CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2022, 41(1): 49. doi:10.1186/s13046-022-02267-8
[78] 苟浩铖, 范丽, 李丽, 等. 细胞焦亡相关因子在下咽鳞状细胞癌中的表达及意义[J]. 中国耳鼻咽喉颅底外科杂志, 2021, 27(2): 183-186. doi:10.11798/j.issn.1007-1520.202103109 GOU Haocheng, FAN Li, LI Li, et al. Expression and significance of pyroptosis related factors in hypopharyngeal squamous cell carcinoma[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2021, 27(2): 183-186. doi:10.11798/j.issn.1007-1520.202103109
[79] Wang H, Liu F. LSD1 silencing inhibits the proliferation, migration, invasion, and epithelial-to-mesenchymal transition of hypopharyngeal cancer cells by inducing autophagy and pyroptosis[J]. Chin J Physiol, 2023, 66(3): 162-170. doi:10.4103/cjop.CJOP-D-22-00137
[1] 陈兴雪,张广玲,武天义,王卫卫,孙占伟,李世超,王广科. 抗IL-4Rα单克隆抗体与鼻内镜手术治疗嗜酸性粒细胞型慢性鼻窦炎伴鼻息肉的疗效分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 43-54.
[2] 朱朗,刘志奇. 移动医疗提供的真实世界数据在变应性鼻炎治疗方案中的参考[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 135-139.
[3] 杨开炎, 唐凤珠, 覃启才, 李旭祥, 冯大益, 农丰靖, 杨秋云. 异常纺锤体样小头畸形相关蛋白在鼻咽癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 18-25.
[4] 张丽净,冯晓星,刘南仙,赵辉明,陈月华. 石墨烯养护鼻罩结合尘螨的皮下特异性免疫治疗在尘螨变应性鼻炎患者中的应用分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 26-32.
[5] 张诗涵,刘红兵. 基质金属蛋白酶对慢性鼻窦炎组织重塑的影响[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 116-123.
[6] 苏日古格,李花,乌日柴夫,韩额尔德木图,孟永梅. 基于网络药理学及动物实验探讨蒙药胡日查-6治疗变应性鼻炎的作用机制研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 41-51.
[7] 崇维琨,王娟. 联合应用奥马珠单抗在儿童中重度变应性哮喘合并慢性鼻窦炎中的疗效观察[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 21-26.
[8] 代红磊,王秋阳,马文学,官兵,齐静静. 基于Joinpoint回归及年龄-时期-队列模型分析鼻咽癌患者的死亡率发展趋势[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 27-31.
[9] 朱晗,刘雪霞,张华. 自噬在变应性鼻炎发病的作用机制研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 79-86.
[10] 任晓勇. 阻塞性睡眠呼吸暂停合并症的研究现状和未来展望[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 1-5.
[11] 孙汐文,骆春雨,李志鹏,张维天. 铁死亡在呼吸道炎症性疾病中的作用及研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 24-32.
[12] 王明明,罗洋,贺少娟,张现兴,李学忠. 慢性鼻窦炎鼻息肉基底干细胞转录组生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 6-15.
[13] 王晓嫒,张欠欠,程翔宇,李志鹏,张维天,叶海波. 翼管神经切断术治疗2型慢性鼻窦炎伴过敏性鼻炎的临床疗效分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 42-49.
[14] 涂巧铃,李玉凤,彭军. 鼻咽癌中抗PD-L1/PD-1治疗及非编码RNA调控研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 135-141.
[15] 朱玉,朱新华. TH2细胞因子在2型慢性鼻窦炎伴鼻息肉中的作用机制研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!