山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (6): 118-122.doi: 10.6040/j.issn.1673-3770.0.2019.582

• 综述 • 上一篇    下一篇

Tim-3在变应性鼻炎中的作用及机制研究进展

向浏岚1,叶远航1综述蒋璐云2,刘洋2审校   

  1. 1. 成都中医药大学附属医院, 四川 成都 610072;
    2. 成都中医药大学附属医院 耳鼻喉科, 四川 成都 610071
  • 发布日期:2021-01-11
  • 通讯作者: 刘洋. E-mail:liuyang_19861010@163.com
  • 基金资助:
    国家自然科学基金(81774131,81603492);2019年度中央引导地方发展专项(19ZYCXSF0065);四川省科技厅科技支撑计划(2016FZ0094);成都中医药大学“杏林学者”学科人才科研提升计划(青年学者)(QNXZ2019016)

Elucidating the role and mechanism of Tim-3 in allergic rhinitis

XIANG Liulan1, YE Yuanhang1Overview,JIANG Luyun2, LIU Yang2Guidance   

  1. 1. Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China;
    2. Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan,  China
  • Published:2021-01-11

摘要: 变应性鼻炎(AR)是一种慢性非特异性鼻黏膜炎性病变,属于Ⅰ型变态反应,是一个全球性健康问题,可导致许多疾病和劳动力丧失,给社会带来的负担也越来越重。其发病过程中所包括的免疫细胞受到了不同的基因组的调控作用。现已有研究论证T细胞免疫球蛋白黏蛋白结构域分子-3(Tim-3)参与到免疫细胞的表达中,对很多免疫反应都有调节作用,与免疫系统疾病密切相关。目前针对变应性鼻炎的药物及治疗方法存在一定的局限性,因此找到更多有效的治疗方法刻不容缓。关于Tim-3在变应性鼻炎中的作用机制的相关研究很多,但其综述却是匮乏的,希望该文章,希望能丰富AR的免疫调控机制研究,并且为其治疗方法提供新的思路。

关键词: 变应性鼻炎, T细胞免疫球蛋白黏蛋白结构域分子-3, 发病机制, 综述

Abstract: Allergic rhinitis(AR)is a chronic, non-specific inflammatory disease of the nasal mucosa. As a Type I hypersensitivity reaction, it leads to several diseases and labor losses and is a global health problem that burdens society. Different proteins, including Tim-3, regulate the immune cells that are involved in the pathogenesis of AR. Tim-3 has been demonstrated to be involved in immune cell expression and has a regulatory effect on several immune responses. Thus, it is also closely related to disorders of the immune system. Presently, the treatment options and medications for AR are limited, and it require more effective therapeutic interventions. While there are several studies on Tim-3's mechanism of action in AR, a review of the available literature is lacking. This article aims to enrich the body of research on the immune regulation mechanism behind AR and provide new ideas for its treatment.

Key words: Allergic rhinitis, T cell immunoglobulin domain and mucin domain protein-3, Pathogenesis, Review

中图分类号: 

  • R765
[1] 刘小涵, 张小兵. PU.1转录因子和辅助性Th9细胞与变应性鼻炎[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 139-143. doi:10.6040/j.issn.1673-3770.0.2018.456. LIU Xiaohan, ZHANG Xiaobing. PU.1 transcription factor and helper Th9 cells with allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 139-143. doi:10.6040/j.issn.1673-3770.0.2018.456.
[2] Bro(·overz)ek JL, Bousquet J, Baena-Cagnani CE, et al. Allergic rhinitis and its impact on asthma(ARIA)guidelines: 2010 revision[J]. J Allergy Clin Immunol, 2010, 126(3): 466-476. doi:10.1016/j.jaci.2010.06.047.
[3] Gaudin RA, Hoehle LP, Birkelbach MA, et al. The association between allergic rhinitis control and sleep quality[J]. HNO, 2017, 65(12):987-992. doi: 10.1007/s00106-017-0398-9.
[4] McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr(an airway hyperreactivity regulatory locus)and the linked Tim gene family[J]. Nat Immunol, 2001, 2(12): 1109-1116. doi:10.1038/ni739.
[5] Anderson AC, Joller N, Kuchroo VK. Lag-3, tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation[J]. Immunity, 2016, 44(5):989-1004. doi:10.1016/j.immuni.2016.05.001.
[6] Joller N, Kuchroo VK. Tim-3, lag-3, and TIGIT[J]. Curr Top Microbiol Immunol, 2017, 410: 127-156. doi:10.1007/82_2017_62.
[7] Melum GR, Farkas L, Scheel C, et al. A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa[J]. J Allergy Clin Immunol, 2014, 134(3): 613-621.e7. doi:10.1016/j.jaci.2014.05.010.
[8] Liu ZQ, Li MG, Geng XR, et al. Vitamin D regulates immunoglobulin mucin domain molecule-4 expression in dendritic cells[J]. Clin Exp Allergy, 2017, 47(5): 656-664. doi:10.1111/cea.12894.
[9] 程雷, 钱俊俊, 田慧琴. 变应性鼻炎研究的若干进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021. CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021.
[10] 焦沃尔. Notch信号在变应性鼻炎发病中的作用及机制研究进展[J]. 疑难病杂志, 2018, 17(8): 860-864. doi:10.3969/j.issn.1671-6450.2018.08.026. JIAO Wo'er. The research progress of function and mechanism of Notch signaling pathway in allergy rhinitis[J]. Chinese Journal of Difficult and Complicated Cases, 2018, 17(8): 860-864. doi:10.3969/j.issn.1671-6450.2018.08.026.
[11] Steelant B, Seys SF, van Gerven L, et al. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis[J]. J Allergy Clin Immunol, 2018, 141(3): 951-963.e8. doi:10.1016/j.jaci.2017.08.039.
[12] Morikawa T, Fukuoka A, Matsushita K, et al. Activation of group 2 innate lymphoid cells exacerbates and confers corticosteroid resistance to mouse nasal type 2 inflammation[J]. Int Immunol, 2017, 29(5): 221-233. doi:10.1093/intimm/dxx030.
[13] Huang F, Yin JN, Wang HB, et al. Association of imbalance of effector T cells and regulatory cells with the severity of asthma and allergic rhinitis in children[J]. Allergy Asthma Proc, 2017,38(6): 70-77. doi:10.2500/aap.2017.38.4076.
[14] Zhang LX, Liu T. Treg influences the pathogenesis of allergic rhinitis through TICAM-1 pathway[J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2018, 32(22): 1763-1766. doi:10.13201/j.issn.1001-1781.2018.22.020.
[15] Oboki K, Ohno T, Saito H, et al. Th17 and allergy[J]. Allergol Int, 2008, 57(2): 121-134. doi:10.2332/allergolint.r-07-160.
[16] Gu ZW, Wang YX, Cao ZW. Neutralization of interleukin-9 ameliorates symptoms of allergic rhinitis by reducing Th2, Th9, and Th17 responses and increasing the Treg response in a murine model[J]. Oncotarget, 2017, 8(9): 14314-14324. doi:10.18632/oncotarget.15177.
[17] Liu Y, Zeng M, Liu Z. Th17 response and its regulation in inflammatory upper airway diseases[J]. Clin Exp Allergy, 2015, 45(3): 602-612. doi:10.1111/cea.12378.
[18] Kim JH, Jang YJ. Role of natural killer cells in airway inflammation[J]. Allergy Asthma Immunol Res, 2018, 10(5): 448. doi:10.4168/aair.2018.10.5.448.
[19] Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510. doi:10.1038/ni1582.
[20] Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells[J]. Science, 2011, 331(6013):44-49. doi: 10.1126/science.1198687.
[21] Scordamaglia F, Balsamo M, Scordamaglia A, et al. Perturbations of natural killer cell regulatory functions in respiratory allergic diseases[J]. J Allergy Clin Immunol, 2008, 121(2): 479-485. doi:10.1016/j.jaci.2007.09.047.
[22] Pawlak EA, Noah TL, Zhou HB, et al. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randomized controlled trial of exposure in allergic rhinitics[J]. Part Fibre Toxicol, 2015, 13: 24. doi:10.1186/s12989-016-0135-7.
[23] Chevalier MF, Bohner P, Pieraerts C, et al. Immunoregulation of dendritic cell subsets by inhibitory receptors in urothelial cancer[J]. Eur Urol, 2017, 71(6): 854-857. doi:10.1016/j.eururo.2016.10.009.
[24] Hastings WD, Anderson DE, Kassam N, et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines[J]. Eur J Immunol, 2009, 39(9): 2492-2501. doi:10.1002/eji.200939274.
[25] Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol, 2005, 6(12): 1245-1252. doi:10.1038/ni1271.
[26] Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J]. Nat Immunol, 2012, 13(9): 832-842. doi:10.1038/ni.2376.
[27] 张峰波, 员静, 朱玥洁, 等. 泡球蚴感染小鼠中Tim-3对Th1/Th2细胞因子平衡的影响作用研究[J]. 中国免疫学杂志, 2019, 35(3): 274-277, 281. doi:10.3969/j.issn.1000-484X.2019.03.004. ZHANG Fengbo, YUAN Jing, ZHU Yuejie, et al. Study of effects of Tim-3 on Th1/Th2 cytokine balance in mice infected with alveolar hydatid[J]. Chinese Journal of Immunology, 2019, 35(3): 274-277,281. doi:10.3969/j.issn.1000-484X.2019.03.004.
[28] 韩佳利, 任重, 姜学钧. Tim-3在变应性鼻炎小鼠鼻黏膜中的表达及其作用的实验研究[J]. 中国医科大学学报, 2008, 37(4): 439-441. doi:10.3969/j.issn.0258-4646.2008.04.003. HAN Jiali, REN Zhong, JIANG Xuejun. Expression and significance of tim-3 in mouse NasalM ucosa with A llergic rhinitis[J]. Journal of China Medical University, 2008, 37(4): 439-441. doi:10.3969/j.issn.0258-4646.2008.04.003.
[29] Fei Tang, Fukun Wang, Liyun An, et al. Upregulation of Tim-3 on CD4(+)T cells is associated with Th1/Th2 imbalance in patients with allergic asthma[J]. Int J Clin Exp Med, 2015,8(3):3809-3816.
[30] Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation[J]. J Allergy Clin Immunol, 2014, 134(3): 509-520. doi:10.1016/j.jaci.2014.05.049.
[31] Phong BL, Avery L, Sumpter TL, et al. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation[J]. J Exp Med, 2015, 212(13): 2289-2304. doi:10.1084/jem.20150388.
[32] Gautron AS, Dominguez-Villar M, de Marcken M, et al. Enhanced suppressor function of TIM-3+FoxP3+regulatory T cells[J]. Eur J Immunol, 2014, 44(9): 2703-2711. doi:10.1002/eji.201344392.
[33] Wang JY, Li C, Fu JJ, et al. Tim-3 regulates inflammatory cytokine expression and Th17 cell response induced by monocytes from patients with chronic hepatitis B[J]. Scand J Immunol, 2019, 89(5): e12755. doi:10.1111/sji.12755.
[34] Xu LY, Huang YY, Tan LL, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J]. Int Immunopharmacol, 2015, 29(2): 635-641. doi:10.1016/j.intimp.2015.09.017.
[35] Hou HY, Liu WY, Wu SJ, et al. Tim-3 negatively mediates natural killer cell function in LPS-induced endotoxic shock[J]. PLoS One, 2014, 9(10): e110585. doi:10.1371/journal.pone.0110585.
[36] Gleason MK, Lenvik TR, McCullar V, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9[J]. Blood, 2012,119(13): 3064-3072. doi:10.1182/blood-2011-06-360321.
[37] Ndhlovu LC, Lopez-Vergès S, Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J]. Blood, 2012, 119(16): 3734-3743. doi:10.1182/blood-2011-11-392951.
[38] Kim N, Kim HS. Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells[J]. Front Immunol, 2018,9: 2041. doi:10.3389/fimmu.2018.02041.
[39] Gleason MK, Lenvik TR, McCullar V, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9[J]. Blood, 2012,119(13): 3064-3072. doi:10.6040/j.issn.1673-3770.0.2019.618.
[1] 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70.
[2] 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91.
[3] 倪璟滋,万文锦,程雷. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 110-115.
[4] 林一杭,李幼瑾. 肠道微生态在儿童变应性鼻炎中的研究现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 116-122.
[5] 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129.
[6] 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141.
[7] 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146.
[8] 龚霄阳,程雷. 新冠疫情期间基于门诊患者的变应性鼻炎患者比例构成分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 245-255.
[9] 鹿伟理,姜涛,李宪华. 多重致敏儿童变应性鼻炎患者sIgE特征分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 260-265.
[10] 黄开月,李雪情,韩国鑫,张勤修. 基于“肺脾”理论指导穴位埋线治疗变应性鼻炎的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 266-274.
[11] 朱正茹, 张小兵. 中药汤剂结合常规西药治疗变应性鼻炎疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 281-289.
[12] 韩莹莹,李延忠. 阻塞性睡眠呼吸暂停低通气综合征与亚临床动脉粥样硬化[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 126-132.
[13] 王菲,刘钰莹,肖麒祎,丁健,高尚,毛薇. 住院医师精神心理因素与变应性鼻炎的相关性研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 28-31.
[14] 王宇婷,王嘉玺. microRNA在过敏性鼻炎发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 98-104.
[15] 刘寨,应民政. 环状RNA在变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬,王挥戈 . 功能性内镜鼻窦手术后鼻黏膜纤毛转归的研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 481 -487 .
[2] 公 蕾,孙 洁,薛子超,李敬华,薛卫国 . 鼻腔鼻窦恶性肿瘤细胞周期的DNA分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 193 -195 .
[3] 陈文文 . 1例T/NK淋巴瘤17年演进[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 472 -472 .
[4] 栾建刚,梁传余,文艳君,李炯 . 抑制表皮生长因子受体基因表达的pSIREN-ShuttleRNAi表达载体的构建[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 4 -8 .
[5] 马敬, 钟翠萍 . 手术治疗侵犯翼腭窝的鼻咽纤维血管瘤的方法(附5例报告)[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 30 -32 .
[6] 刘强和,罗香林,耿宛平,陈 晨,雷 迅,刘芳贤,邓 明 . 快速老化小鼠的听功能和耳蜗螺旋神经元的增龄性变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 215 -217 .
[7] 郑鹏凌,陈卫国,易笃友,黄清秀,卢 俊 . 耳内镜下吸引清除耳道耵聍55例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 223 -226 .
[8] 马 敬,钟翠萍,严 星,安 飞 . 耳屏软骨修补无残余软骨的鼻中隔穿孔15例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 246 -247 .
[9] 崔哲洙,严永峰,崔春莲,金顺吉 . 嗜酸性粒细胞在变应性鼻炎合并慢性鼻窦炎的分布特点[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 250 -252 .
[10] 赵鲁新,翟 洪,潘 洁 . 超声乳化吸除联合晶状体植入治疗急性闭角型青光眼伴白内障23例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 260 -262 .