山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (6): 15-23.doi: 10.6040/j.issn.1673-3770.0.2022.233

• 名师特稿 • 上一篇    下一篇

肠道菌群在阻塞性睡眠呼吸暂停相关认知功能障碍中的研究进展

郭瑞祥,王岩   

  1. 山东大学), 山东 济南 250012
  • 发布日期:2023-12-15
  • 通讯作者: 王岩. E-mail:wangyan66@sdu.edu.cn
  • 基金资助:
    山东大学横向课题项目(1520021007);国家自然科学基金青年项目(82000968);山东省自然科学基金青年项目(ZR201911030252)

Recent advances in research on the association between intestinal flora and obstructive sleep apnea-related cognitive impairment

GUO Ruixiang, WANG Yan   

  1. Department of Otorhinolaryngology, Qilu Hospital of Shandong University/ NHC Key Laboratory of Otolaryngolory (Shandong University), Jinan 250012, Shandong, China
  • Published:2023-12-15

摘要: 阻塞性睡眠呼吸暂停(obstructive sleep apnea, OSA)是最常见的睡眠呼吸紊乱疾病,认知障碍是其严重的并发症之一。近几十年来,肠道菌群失衡在OSA相关认知障碍中的作用成为了研究热点,但具体关系及机制尚未明确。本文从肠道菌群及其代谢改变与继发的宿主的病理改变等方面,从慢性间歇性缺氧与睡眠片段化等角度,涉及饮食、环境因素等方面,介绍了肠道菌群失衡在OSA并发认知障碍中可能的机制,对持续正压通气传统治疗方式对于认知功能的改变和肠道菌群的影响也作出了相应的描述。系统地了解肠道菌群与认知相关的肠脑轴之间的关系,以期为伴有认知功能障碍的OSA患者提供多样的、个体化的诊疗策略。

关键词: 睡眠呼吸暂停, 阻塞性, 肠道菌群, 认知功能障碍, 肠脑轴

Abstract: Objective Obstructive sleep apnea(OSA)is the most common type of sleep-disordered breathing. Cognitive impairment is a serious complication of OSA. Over the past few decades, research on OSA-related cognitive impairment has focused on the involvement of intestinal flora imbalance. Although this area of study has become a research hotspot, the nature of the relationship between gut dysbiosis and OSA-related cognitive impairment as well as the mechanisms through which they interact are still not clearly understood. In this paper, discussion of intestinal microflora, metabolic changes, and secondary host pathological changes,both from the aspects of chronic intermittent hypoxia and sleep fragmentation, involving dietary habit and environmental factor and so on, which will provide a framework through which potential mechanisms of interaction between intestinal microflora imbalance and cognitive impairment secondary to OSA and also describe the effect of traditional continuous positive airway pressure treatment on cognitive function and gut microbiota. Systematic investigation and thorough understanding of this relationship between the microbiota and cognition-related gut-brain axis, is essential for not only proper diagnosis but also development of comprehensive treatment plans that can be tailored to individual patients with OSA and subsequent cognitive impairment.

Key words: Sleep apnea, Obstructive, Intestinal flora, Cognitive impairment, The-gut-brain axis

中图分类号: 

  • R766.49
[1] 杨晰珺, 关建. 阻塞性睡眠呼吸暂停低通气综合征与血脂紊乱关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 133-138. doi:10.6040/j.issn.1673-3770.0.2021.078 YANG Xijun, GUAN Jian. Research progress on the relationship between obstructive sleep apnea-hypopnea syndrome and dyslipidemia[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 133-138. doi:10.6040/j.issn.1673-3770.0.2021.078
[2] Dunietz GL, Chervin RD, Burke JF, et al. Obstructive sleep apnea treatment and dementia risk in older adults[J]. Sleep, 2021, 44(9): 76. doi:10.1093/sleep/zsab076
[3] Vanek J, Prasko J, Genzor S, et al. Obstructive sleep apnea, depression and cognitive impairment[J]. Sleep Med, 2020, 72: 50-58. doi:10.1016/j.sleep.2020.03.017
[4] Jiang XZ, Wang ZC, Hu N, et al. Cognition effectiveness of continuous positive airway pressure treatment in obstructive sleep apnea syndrome patients with cognitive impairment: a meta-analysis[J]. Exp Brain Res, 2021, 239(12): 3537-3552. doi:10.1007/s00221-021-06225-2
[5] Liu ZG, Dai XS, Zhang HB, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment[J]. Nat Commun, 2020, 11(1): 855. doi:10.1038/s41467-020-14676-4
[6] Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea[J]. Expert Opin Ther Targets, 2020, 24(12): 1263-1282. doi:10.1080/14728222.2020.1841749
[7] Wang Y, Kasper LH. The role of microbiome in central nervous system disorders[J]. Brain Behav Immun, 2014, 38: 1-12. doi:10.1016/j.bbi.2013.12.015
[8] Sonali S, Ray B, Ahmed Tousif H, et al. Mechanistic insights into the link between gut dysbiosis and major depression: an extensive review[J]. Cells, 2022, 11(8): 1362. doi:10.3390/cells11081362
[9] Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013. doi:10.1152/physrev.00018.2018
[10] Kim MS, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model[J]. Gut, 2020, 69(2): 283-294. doi:10.1136/gutjnl-2018-317431
[11] Chen C, Ahn EH, Kang SS, et al. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer's disease mouse model[J]. Sci Adv, 2020, 6(31): 0466. doi:10.1126/sciadv.aba0466
[12] Chu C, Murdock MH, Jing DQ, et al. The microbiota regulate neuronal function and fear extinction learning[J]. Nature, 2019, 574(7779): 543-548. doi:10.1038/s41586-019-1644-y
[13] Raparelli V, Basili S, Carnevale R, et al. Low-grade endotoxemia and platelet activation in cirrhosis[J]. Hepatology, 2017, 65(2): 571-581. doi:10.1002/hep.28853
[14] Wang Z, Chen WH, Li SX, et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation[J]. Mol Psychiatry, 2021, 26(11): 6277-6292. doi:10.1038/s41380-021-01113-1
[15] Hu CW, Wang P, Yang YY, et al. Chronic intermittent hypoxia participates in the pathogenesis of atherosclerosis and perturbs the formation of intestinal microbiota[J]. Front Cell Infect Microbiol, 2021, 11: 560201. doi:10.3389/fcimb.2021.560201
[16] Durgan DJ. Obstructive sleep apnea-induced hypertension: role of the gut microbiota[J]. Curr Hypertens Rep, 2017, 19(4): 35. doi:10.1007/s11906-017-0732-3
[17] Poroyko VA, Carreras A, Khalyfa A, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice[J]. Sci Rep, 2016, 6: 35405. doi:10.1038/srep35405
[18] Wang F, Zou JJ, Xu HJ, et al. Effects of chronic intermittent hypoxia and chronic sleep fragmentation on gut microbiome, serum metabolome, liver and adipose tissue morphology[J]. Front Endocrinol(Lausanne), 2022, 13: 820939. doi:10.3389/fendo.2022.820939
[19] Dalile B, van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478. doi:10.1038/s41575-019-0157-3
[20] Correia MJ, Pimpão AB, Lopes-Coelho F, et al. Aryl hydrocarbon receptor and cysteine redox dynamics underlie(mal)adaptive mechanisms to chronic intermittent hypoxia in kidney cortex[J]. Antioxidants(Basel), 2021, 10(9): 1484. doi:10.3390/antiox10091484
[21] Liang SS, Liu SX, Liu H, et al. Homocysteine aggravates intestinal epithelial barrier dysfunction in rats with experimental uremia[J]. Kidney Blood Press Res, 2018, 43(5): 1516-1528. doi:10.1159/000494018
[22] El Aidy S, Dinan TG, Cryan JF. Immune modulation of the brain-gut-microbe axis[J]. Front Microbiol, 2014, 5: 146. doi:10.3389/fmicb.2014.00146
[23] Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity[J]. Respir Physiol Neurobiol, 2018, 256: 143-156. doi:10.1016/j.resp.2017.06.004
[24] Xian PP, Hei Y, Wang R, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J]. Theranostics, 2019, 9(20): 5956-5975. doi:10.7150/thno.33872
[25] Reza-Zaldivar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, et al. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer's disease[J]. Neural Regen Res, 2019, 14(9): 1626-1634. doi:10.4103/1673-5374.255978
[26] Yang JL, Zhang XF, Chen XJ, et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia[J]. Mol Ther Nucleic Acids, 2017, 7: 278-287. doi:10.1016/j.omtn.2017.04.010
[27] Mashaqi S, Gozal D. Obstructive sleep apnea and systemic hypertension: gut dysbiosis as the mediator? [J]. J Clin Sleep Med, 2019, 15(10): 1517-1527. doi:10.5664/jcsm.7990
[28] Yang ZG, Huang CN, Wu YF, et al. Autophagy protects the blood-brain barrier through regulating the dynamic of claudin-5 in short-term starvation[J]. Front Physiol, 2019, 10: 2. doi:10.3389/fphys.2019.00002
[29] Kim KA, Shin D, Kim JH, et al. Role of autophagy in endothelial damage and blood-brain barrier disruption in ischemic stroke[J]. Stroke, 2018, 49(6): 1571-1579. doi:10.1161/STROKEAHA.117.017287
[30] Yang ZG, Lin PP, Chen B, et al. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5(claudin 5)[J]. Autophagy, 2021, 17(10): 3048-3067. doi:10.1080/15548627.2020.1851897
[31] Zhao YN, Guo XF, Li JM, et al. mTOR/autophagy pathway in the Hippocampus of rats suffering intermittent hypoxia preconditioning and global cerebral ischemia-reperfusion[J]. Oncotarget, 2017, 8(14): 23353-23359. doi:10.18632/oncotarget.15058
[32] Rose S, Bennuri SC, Davis JE, et al. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism[J]. Transl Psychiatry, 2018, 8(1): 42. doi:10.1038/s41398-017-0089-z
[33] Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus…[J]. Neuron, 2019, 101(6): 998-1002. doi:10.1016/j.neuron.2019.02.008
[34] Sgritta M, Dooling SW, Buffington SA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder[J]. Neuron, 2019, 101(2): 246-259.e6. doi:10.1016/j.neuron.2018.11.018
[35] Wu Y, Zhang Y, Xie B, et al. RhANP attenuates endotoxin-derived cognitive dysfunction through subdiaphragmatic vagus nerve-mediated gut microbiota-brain axis[J]. J Neuroinflammation, 2021, 18(1): 300. doi:10.1186/s12974-021-02356-z
[36] Berry R B. Fundamentals of sleep medicine [M]. Philadelphia, PA: Elsevier/Saunders, 2012, 17: 286-292
[37] Vodicka M, Ergang P, Hrncír T, et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress[J]. Brain Behav Immun, 2018, 73: 615-624. doi:10.1016/j.bbi.2018.07.007
[38] Keller J, Gomez R, Williams G, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition[J]. Mol Psychiatry, 2017, 22(4): 527-536. doi:10.1038/mp.2016.120
[39] Wu WL, Adame MD, Liou CW, et al. Microbiota regulate social behaviour via stress response neurons in the brain[J]. Nature, 2021, 595(7867): 409-414. doi:10.1038/s41586-021-03669-y
[40] Luczynski P, McVey Neufeld KA, Oriach CS, et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior[J]. Int J Neuropsychopharmacol, 2016, 19(8): 020. doi:10.1093/ijnp/pyw020
[41] Zijlmans MA, Korpela K, Riksen-Walraven JM, et al. Maternal prenatal stress is associated with the infant intestinal microbiota[J]. Psychoneuroendocrinology, 2015, 53: 233-245. doi:10.1016/j.psyneuen.2015.01.006
[42] MahmoudianDehkordi S, Arnold M, Nho K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome[J]. Alzheimers Dement, 2019, 15(1): 76-92. doi:10.1016/j.jalz.2018.07.217
[43] Moloney RD, Johnson AC, O'Mahony SM, et al. Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome[J]. CNS Neurosci Ther, 2016, 22(2): 102-117. doi:10.1111/cns.12490
[44] Ko CY, Su HZ, Zhang L, et al. Disturbances of the gut microbiota, sleep architecture, and mTOR signaling pathway in patients with severe obstructive sleep apnea-associated hypertension[J]. Int J Hypertens, 2021, 2021: 9877053. doi:10.1155/2021/9877053
[45] Rosenzweig I, Williams SCR, Morrell MJ. The impact of sleep and hypoxia on the brain: potential mechanisms for the effects of obstructive sleep apnea[J]. Curr Opin Pulm Med, 2014, 20(6): 565-571. doi:10.1097/MCP.0000000000000099
[46] Noble EE, Hsu TM, Kanoski SE. Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment[J]. Front Behav Neurosci, 2017, 11: 9. doi:10.3389/fnbeh.2017.00009
[47] Nagpal R, Neth BJ, Wang SH, et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment[J]. EBioMedicine, 2019, 47: 529-542. doi:10.1016/j.ebiom.2019.08.032
[48] Olson CA, Iñiguez AJ, Yang GE, et al. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia[J]. Cell Host Microbe, 2021, 29(9): 1378-1392.e6. doi:10.1016/j.chom.2021.07.004
[49] Das SK, Dhar P, Sharma VK, et al. High altitude with monotonous environment has significant impact on mood and cognitive performance of acclimatized lowlanders: possible role of altered serum BDNF and plasma homocysteine level[J]. J Affect Disord, 2018, 237: 94-103. doi:10.1016/j.jad.2018.04.106
[50] Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of stress and neuroinflammation[J]. Neurobiol Stress, 2016, 4: 23-33. doi:10.1016/j.ynstr.2016.03.001
[51] Marcel van de Wouw, Boehme M, Lyte JM, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations[J]. J Physiol, 2018, 596(20): 4923-4944. doi:10.1113/JP276431
[52] Erny D, Dokalis N, Mezö C, et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease[J]. Cell Metab, 2021, 33(11): 2260-2276, 7. doi:10.1016/j.cmet.2021.10.010
[53] Kundu P, Lee HU, Garcia-Perez I, et al. Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice[J]. Sci Transl Med, 2019, 11(518): eaau4760. doi:10.1126/scitranslmed.aau4760
[54] Ko CY, Liu QQ, Su HZ, et al. Gut microbiota in obstructive sleep apnea-hypopnea syndrome: disease-related dysbiosis and metabolic comorbidities[J]. Clin Sci(Lond), 2019, 133(7): 905-917. doi:10.1042/CS20180891
[55] Roth W, Zadeh K, Vekariya R, et al. Tryptophan metabolism and gut-brain homeostasis[J]. Int J Mol Sci, 2021, 22(6): 2973. doi:10.3390/ijms22062973
[56] Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. doi:10.1016/j.cell.2015.02.047
[57] Romo-Araiza A, Gutiérrez-Salmeán G, Galván EJ, et al. Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats[J]. Front Aging Neurosci, 2018, 10: 416. doi:10.3389/fnagi.2018.00416
[58] Wang F, Liu QY, Wu HY, et al. The dysbiosis gut microbiota induces the alternation of metabolism and imbalance of Th17/Treg in OSA patients[J]. Arch Microbiol, 2022, 204(4): 217. doi:10.1007/s00203-022-02825-w
[59] Tatsuoka M, Osaki Y, Ohsaka F, et al. Consumption of indigestible saccharides and administration of Bifidobacterium pseudolongum reduce mucosal serotonin in murine colonic mucosa[J]. Br J Nutr, 2022, 127(4): 513-525. doi:10.1017/S0007114521001306
[60] Jena PK, Sheng LL, di Lucente J, et al. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity[J]. FASEB J, 2018, 32(5): 2866-2877. doi:10.1096/fj.201700984RR
[61] Dionísio PA, Amaral JD, Ribeiro MF, et al. Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset[J]. Neurobiol Aging, 2015, 36(1): 228-240. doi:10.1016/j.neurobiolaging.2014.08.034
[62] Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome[J]. Nature, 2013, 499(7456): 97-101. doi:10.1038/nature12347
[63] Degirolamo C, Rainaldi S, Bovenga F, et al. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice[J]. Cell Rep, 2014, 7(1): 12-18. doi:10.1016/j.celrep.2014.02.032
[64] Allaband C, Lingaraju A, Martino C, et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome[J]. mSystems, 2021: e0011621. doi:10.1128/mSystems.00116-21
[65] Brown GC. The endotoxin hypothesis of neurodegeneration[J]. J Neuroinflammation, 2019, 16(1): 180. doi:10.1186/s12974-019-1564-7
[66] Lukiw WJ. Gastrointestinal(GI)tract microbiome-derived neurotoxins-potent neuro-inflammatory signals from the GI tract via the systemic circulation into the brain[J]. Front Cell Infect Microbiol, 2020, 10: 22. doi:10.3389/fcimb.2020.00022
[67] Xin YR, Jiang JX, Hu Y, et al. The immune system drives synapse loss during lipopolysaccharide-induced learning and memory impairment in mice[J]. Front Aging Neurosci, 2019, 11: 279. doi:10.3389/fnagi.2019.00279
[68] Murray E, Sharma R, Smith KB, et al. Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner[J]. Brain Behav Immun, 2019, 81: 198-212. doi:10.1016/j.bbi.2019.06.016
[69] Tripathi A, Melnik AV, Xue J, et al. Intermittent hypoxia and hypercapnia, a hallmark of obstructive sleep apnea, alters the gut microbiome and metabolome[J]. mSystems, 2018, 3(3): e00020-e00018. doi:10.1128/mSystems.00020-18
[70] Moreno-Navarrete JM, Blasco G, Puig J, et al. Neuroinflammation in obesity: circulating lipopolysaccharide-binding protein associates with brain structure and cognitive performance[J]. Int J Obes(Lond), 2017, 41(11): 1627-1635. doi:10.1038/ijo.2017.162
[71] Kong YF, Li ZJ, Tang TY, et al. The level of lipopolysaccharide-binding protein is elevated in adult patients with obstructive sleep apnea[J]. BMC Pulm Med, 2018, 18(1): 90. doi:10.1186/s12890-018-0647-z
[72] Shao L, Heizhati M, Yao XG, et al. Influences of obstructive sleep apnea on blood pressure variability might not be limited only nocturnally in middle-aged hypertensive males[J]. Sleep Breath, 2018, 22(2): 377-384. doi:10.1007/s11325-017-1571-9
[73] Turner K, Zambrelli E, Lavolpe S, et al. Obstructive sleep apnea: neurocognitive and behavioral functions before and after treatment[J]. Funct Neurol, 2019, 34(2): 71-78
[74] Wang ML, Wang C, Tuo M, et al. Cognitive effects of treating obstructive sleep apnea: a meta-analysis of randomized controlled trials[J]. J Alzheimers Dis, 2020, 75(3): 705-715. doi:10.3233/JAD-200088
[75] Bubu OM, Andrade AG, Umasabor-Bubu OQ, et al. Obstructive sleep apnea, cognition and Alzheimer's disease: a systematic review integrating three decades of multidisciplinary research[J]. Sleep Med Rev, 2020, 50: 101250. doi:10.1016/j.smrv.2019.101250
[76] 黎燕群, 万程伟, 陈妍, 等. 持续气道正压通气治疗对OSAHS患者肠道菌群的影响[J]. 现代医院, 2020, 20(10): 1539-1541. doi:10.3969/j.issn.1671-332X.2020.10.038 LI Yanqun, WAN Chengwei, CHEN Yan, et al. Effect of continuous positive airway pressure on intestinal flora in patients with OSAHS[J]. Chinese Journal of Modern Applied Pharmacy, 2020, 20(10): 1539-1541. doi:10.3969/j.issn.1671-332X.2020.10.038
[77] Dostálová V, Kole ckárová S, Ku ska M, et al. Effects of continuous positive airway pressure on neurocognitive and neuropsychiatric function in obstructive sleep apnea[J]. J Sleep Res, 2019, 28(5): 12761. doi:10.1111/jsr.12761
[78] Rosenzweig I, Glasser M, Crum WR, et al. Changes in neurocognitive architecture in patients with obstructive sleep apnea treated with continuous positive airway pressure[J]. EBioMedicine, 2016, 7: 221-229. doi:10.1016/j.ebiom.2016.03.020
[1] 任晓勇. 阻塞性睡眠呼吸暂停合并症的研究现状和未来展望[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 1-5.
[2] 李彦如,施云瀚,曹莉莉,廖建宏,亢丹,费南希,韩德民. 前伸下颌动作与口腔矫治器对上气道形态影响的一致性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 6-14.
[3] 孙汐文,骆春雨,李志鹏,张维天. 铁死亡在呼吸道炎症性疾病中的作用及研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 24-32.
[4] 胡婷婷,王越华. 阻塞性睡眠呼吸暂停与乳腺癌相关性研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 41-45.
[5] 石争浩,周亮,李成建,张治军,张一彤,尤珍臻,罗靖,陈敬国,刘海琴,赵明华,黑新宏,任晓勇. 深度学习方法在睡眠呼吸暂停检测中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 46-61.
[6] 朱雅欣,刘峰,关建,殷善开. 儿童扁桃体腺样体肥大组织淋巴细胞改变的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 62-67.
[7] 王璐,张云云,郭华,崔小川. 脂质代谢标志物在早期筛查阻塞性睡眠呼吸暂停患者中阿尔兹海默症的应用价值[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 68-74.
[8] 王磊,李保卫,王刚,刘红丹,韩浩伦,张晓丽,吴玮. 阻塞性睡眠呼吸暂停低通气综合征患者夜间碱反流初步研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 75-79.
[9] 王腾,余林,李穗. 血清γ-谷氨酰基转移酶与阻塞性睡眠呼吸暂停综合征伴发高血压的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 80-84.
[10] 袁钰淇,曹子讷,牛晓欣,谢雨杉,苏永龙,朱思敏,张一彤,刘海琴,任晓勇,施叶雯. 外周血炎症指标在阻塞性睡眠呼吸暂停低通气综合征伴高血压中的临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 85-92.
[11] 王钰彧,朱梅. 体位性睡眠呼吸暂停患者的临床特点及其与低觉醒阈值的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 101-105.
[12] 邢亮,袁钰淇,谢雨杉,苏永龙,牛晓欣,麻莉娜,王子桐,刘海琴,施叶雯,任晓勇. 不同觉醒阈值阻塞性睡眠呼吸暂停低通气患者对血气、糖脂代谢水平的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 106-111.
[13] 张玉焕,张俊波,尹国平,袁雪梅,曹鑫,孙宇,陈强,叶京英. 鼾症患者前后半夜多导睡眠监测参数的对比分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 112-117.
[14] 张一彤,李青香,石争浩,尚磊,袁钰淇,曹子讷,麻莉娜,刘海琴,任晓勇,施叶雯. 阻塞性睡眠呼吸暂停儿童睡眠结构研究及睡眠结构判读模型建立[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 126-132.
[15] 宗春琳,陆金标,杨勇,苏忠平,于擘. MDT联合翻转课堂在儿童OSA临床教学中的应用研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 139-144.
Viewed
Full text
162
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 162

  From Others local
  Times 5 157
  Rate 3% 97%

Abstract
560
Just accepted Online first Issue
0 0 560
  From Others local
  Times 557 3
  Rate 99% 1%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 董卫红,毕宏生,王兴荣,马先祯,杜秀娟,俞 超 . 玻璃体视网膜联合术治疗复杂性眼外伤52例[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 362 -365 .
[2] 王相如,蒋 华,张 霞,王晓莉 . 穿透角膜移植术各屈光变量及其相互关系[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 373 -375 .
[3] 田省霞,王小红,陈馨,曹连涛,薛琨 . 鼻内镜术后局部应用糖皮质激素治疗慢性[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 51 -52 .
[4] 殷济清 . 血府逐瘀胶囊治疗扁桃体炎、咽喉炎28例[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 477 -477 .
[5] 邢金燕,,陶爱林,张建国 . 变应性鼻炎的发病机制研究现状[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 451 -455 .
[6] 谢志刚, 张喜英 . 儿童及青少年鼻窦炎内窥镜术后鼻腔黏连的预防与处理[J]. 山东大学耳鼻喉眼学报, 2006, 20(3): 242 -243 .
[7] 冯云1,2 ,李文婷3 ,唐平章1 ,徐震纲1 ,张彬1 ,王乃利3
. 胸背动脉穿支皮瓣的解剖学研究
及其在头颈修复中的意义
[J]. 山东大学耳鼻喉眼学报, 2009, 23(2): 20 -23 .
[8] 梁利伟. 唇龈沟径路治疗鼻中隔软骨前脱位[J]. 山东大学耳鼻喉眼学报, 2009, 23(3): 50 -51 .
[9] 邓享坤,王金泉,邱志宏,邓秀玉. 鼻内镜下鼻腔鼻窦血管瘤切除术[J]. 山东大学耳鼻喉眼学报, 2010, 24(01): 43 .
[10] 赵振华1,王启荣1,刘树伟2,韩飞1,古林涛1,李晓1,陈志鹏1. 蝶窦冠状位薄层断层解剖学研究[J]. 山东大学耳鼻喉眼学报, 2010, 24(2): 35 -37 .