山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (6): 24-32.doi: 10.6040/j.issn.1673-3770.0.2022.241

• 名师特稿 • 上一篇    下一篇

铁死亡在呼吸道炎症性疾病中的作用及研究进展

孙汐文,骆春雨,李志鹏,张维天   

  1. 上海交通大学医学院附属第六人民医院 耳鼻咽喉头颈外科, 上海 200233
  • 发布日期:2023-12-15
  • 通讯作者: 张维天. E-mail:drzhangwt@163.com;李志鹏. E-mail:317411734@qq.com
  • 基金资助:
    国家自然科学基金项目(82071014,81870700,82271137,82000951);上海申康医院发展中心新兴前沿技术联合攻关项目(SHDC12020129)

Role of ferroptosis in inflammatory diseases of the respiratory tract: a review of recent advances

SUN Xiwen, LUO Chunyu, LI Zhipeng, ZHANG Weitian   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
  • Published:2023-12-15

摘要: 铁死亡是一种以铁依赖性脂质过氧化物累积为主要特征的细胞程序性死亡方式。近年来越来越多的研究探索了铁死亡的机制并发现许多分子在调控细胞铁死亡中起着至关重要的作用。新出现的证据表明在哮喘、慢性阻塞性肺疾病、肺纤维化、肺部感染甚至新型冠状病毒肺炎等多种呼吸道炎症性疾病中均存在铁死亡,这表明铁死亡似乎对呼吸道炎症性疾病尤为重要,因此靶向铁死亡机制的药物可能在呼吸道炎症性疾病中具有巨大的治疗前景。论文着重总结铁死亡在呼吸道炎症性疾病中的作用和综合分子机制,提出多角度调控铁死亡可能是临床治疗呼吸道炎症性疾病的一种有前景的策略。

关键词: 铁死亡, 哮喘, 慢性阻塞性肺疾病, 肺炎, 鼻息肉, 变应性鼻炎

Abstract: Ferroptosis is a form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides. In recent years, more studies have explored the mechanism of ferroptosis, identifying the crucial role of numerous molecules in its regulation. Emerging evidence has identified ferroptosis in various respiratory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pulmonary infections, and even COVID-19, suggesting its crucial role in respiratory inflammatory disorders. Thus, drugs targeting the mechanism of ferroptosis may have significant therapeutic efficacy in respiratory inflammatory diseases. This review focused on the role and molecular mechanism of ferroptosis in respiratory inflammatory diseases, and proposed multi-angle regulation of ferroptosis as a promising potential strategy for their clinical treatment.

Key words: Ferroptosis, Asthma, Chronic obstructive pulmonary disease, Pneumonia, Nasal polyp, Allergic rhinitis

中图分类号: 

  • R56
[1] Chen X, Li JB, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-2081. doi:10.1080/15548627.2020.1810918
[2] Chen X, Kang R, Kroemer G, et al. Organelle-specific regulation of ferroptosis[J]. Cell Death Differ, 2021, 28(10): 2843-2856. doi:10.1038/s41418-021-00859-z
[3] Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance[J]. Environ Pollut, 2019, 254: 112937. doi:10.1016/j.envpol.2019.07.105
[4] Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis[J]. Nat Commun, 2019, 10(1): 3145. doi:10.1038/s41467-019-10991-7
[5] Huang CL, Yang MC, Deng J, et al. Upregulation and activation of p53 by erastininduced reactive oxygen species contribute to cytotoxic and cytostatic effects in A549 lung cancer cells[J]. Oncol Rep, 2018, 40(4): 2363-2370. doi:10.3892/or.2018.6585
[6] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. doi:10.1016/j.cell.2012.03.042
[7] Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. doi:10.1016/j.cell.2017.09.021
[8] Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi:10.1038/s41580-020-00324-8
[9] Zhao JM, Dar HH, Deng YH, et al. PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells[J]. Proc Natl Acad Sci USA, 2020, 117(25): 14376-14385. doi:10.1073/pnas.1921618117
[10] Anthonymuthu TS, Tyurina YY, Sun WY, et al. Resolving the paradox of ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis[J]. Redox Biol, 2021, 38: 101744. doi:10.1016/j.redox.2020.101744
[11] Doll S, Conrad M. Iron and ferroptosis: a still ill-defined liaison[J]. IUBMB Life, 2017, 69(6): 423-434. doi:10.1002/iub.1616
[12] Stoyanovsky DA, Tyurina YY, Shrivastava I, et al. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? [J]. Free Radic Biol Med, 2019, 133: 153-161. doi:10.1016/j.freeradbiomed.2018.09.008
[13] Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. doi:10.1038/s41392-020-00428-9
[14] Wang XT, Wang ZX, Cao J, et al. Ferroptosis mechanisms involved in hippocampal-related diseases[J]. Int J Mol Sci, 2021, 22(18): 9902. doi:10.3390/ijms22189902
[15] Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422.e21. doi:10.1016/j.cell.2017.11.048
[16] Alim I, Caulfield JT, Chen YX, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke[J]. Cell, 2019, 177(5): 1262-1279.e25. doi:10.1016/j.cell.2019.03.032
[17] Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331. doi:10.1016/j.cell.2013.12.010
[18] Koppula P, Zhuang L, Gan BY. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. doi:10.1007/s13238-020-00789-5
[19] Gao W, Li LL, Wang YJ, et al. Bronchial epithelial cells: the key effector cells in the pathogenesis of chronic obstructive pulmonary disease? [J]. Respirology, 2015, 20(5): 722-729. doi:10.1111/resp.12542
[20] 黄丹怡, 张婷, 陈静, 等. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. doi:10.6040/j.issn.1673-3770.0.2021.583 HUANG Danyi, ZHANG Ting, CHEN Jing, et al. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. doi:10.6040/j.issn.1673-3770.0.2021.583
[21] Kim N, Han D, Wang IJ, et al. Altered secretome by diesel exhaust particles and lipopolysaccharide in primary human nasal epithelium[J]. J Allergy Clin Immunol, 2022, 149(6): 2126-2138. doi:10.1016/j.jaci.2021.12.793
[22] Lugg ST, Scott A, Parekh D, et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease[J]. Thorax, 2022, 77(1): 94-101. doi:10.1136/thoraxjnl-2020-216296
[23] Krysko O, Holtappels G, Zhang N, et al. Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis[J]. Allergy, 2011, 66(3): 396-403. doi:10.1111/j.1398-9995.2010.02498.x
[24] Li JY, Yao YM, Tian YP. Ferroptosis: a trigger of proinflammatory state progression to immunogenicity in necroinflammatory disease[J]. Front Immunol, 2021, 12: 701163. doi:10.3389/fimmu.2021.701163
[25] Cheng Y, Song YT, Chen H, et al. Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological disorders[J]. Oxid Med Cell Longev, 2021: 5005136. doi:10.1155/2021/5005136
[26] 李贝, 田首元, 郭志佳, 等. 铁死亡与炎症性疾病的研究现状[J]. 医学综述, 2021, 27(7): 1302-1306. doi: 10.3969/j.issn.1006-2084.2021.07.010 LI Bei, TIAN Shouyuan, GUO Zhijia, et al. Research status of ferroptosis and inflammatory diseases[J]. Medical Recapitulate, 2021, 27(7): 1302-1306. doi: 10.3969/j.issn.1006-2084.2021.07.010
[27] 中华医学会呼吸病学分会哮喘学组. 上-下气道慢性炎症性疾病联合诊疗与管理专家共识[J]. 中华医学杂志, 2017, 97(26): 2001-2022. doi:10.3760/cma.j.issn.0376-2491.2017.26.001
[28] 王娜, 柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. doi: 10.6040/j.issn.1673-3770.0.2020.498 WANG Na, CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. doi: 10.6040/j.issn.1673-3770.0.2020.498
[29] Akar-Ghibril N, Casale T, Custovic A, et al. Allergic endotypes and phenotypes of asthma[J]. J Allergy Clin Immunol Pract, 2020, 8(2): 429-440. doi:10.1016/j.jaip.2019.11.008
[30] Wenzel SE, Tyurina YY, Zhao JM, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171(3): 628-641.e26. doi:10.1016/j.cell.2017.09.044
[31] Nagasaki T, Schuyler AJ, Zhao J, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation[J]. J Clin Invest, 2022, 132(1): e151685. doi:10.1172/jci151685
[32] Yamada K, St Croix CM, Deng Y, et al. 15 lipoxygenase linked mitophagy promotes epithelial cell mitochondrial loss in type-2 hi asthma[C] //D12. BASIC SCIENCE INSIGHTS INTO MODULATION OF IMMUNE AND INFLAMMATORY PATHWAYS. American Thoracic Society, 2022. doi:10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a5009
[33] Banerjee P, Balraj P, Ambhore NS, et al. Network and co-expression analysis of airway smooth muscle cell transcriptome delineates potential gene signatures in asthma[J]. Sci Rep, 2021, 11(1): 14386. doi:10.1038/s41598-021-93845-x
[34] Tang WF, Dong M, Teng FZ, et al. Environmental allergens house dust mite-induced asthma is associated with ferroptosis in the lungs[J]. Exp Ther Med, 2021, 22(6): 1483. doi:10.3892/etm.2021.10918
[35] Han F, Li SJ, Yang YK, et al. Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis[J]. Bioengineered, 2021, 12(1): 5279-5288. doi:10.1080/21655979.2021.1964158
[36] Yang N, Shang Y. Ferrostatin-1 and 3-methyladenine ameliorate ferroptosis in OVA-induced asthma model and in IL-13-challenged BEAS-2B cells[J]. Oxid Med Cell Longev, 2022: 9657933. doi:10.1155/2022/9657933
[37] Wu YP, Chen HX, Xuan NX, et al. Induction of ferroptosis-like cell death of eosinophils exerts synergistic effects with glucocorticoids in allergic airway inflammation[J]. Thorax, 2020, 75(11): 918-927. doi:10.1136/thoraxjnl-2020-214764
[38] Lin ZW, Xu YF, Guan LL, et al. Seven ferroptosis-specific expressed genes are considered as potential biomarkers for the diagnosis and treatment of cigarette smoke-induced chronic obstructive pulmonary disease[J]. Ann Transl Med, 2022, 10(6): 331. doi:10.21037/atm-22-1009
[39] Lian NF, Zhang QX, Chen J, et al. The role of ferroptosis in bronchoalveolar epithelial cell injury induced by cigarette smoke extract[J]. Front Physiol, 2021, 12: 751206. doi:10.3389/fphys.2021.751206
[40] Ghio AJ, Hilborn ED, Stonehuerner JG, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect[J]. Am J Respir Crit Care Med, 2008, 178(11): 1130-1138. doi:10.1164/rccm.200802-334OC
[41] Liu JX, Zhang ZX, Yang Y, et al. NCOA4-mediated ferroptosis in bronchial epithelial cells promotes macrophage M2 polarization in COPD emphysema[J]. Int J Chron Obstruct Pulmon Dis, 2022, 17: 667-681. doi:10.2147/COPD.S354896
[42] Jeridi A, Günes Günsel G, Novikova M, et al. Macrophage induced ferroptotic cell death of epithelial cells drives COPD pathogenesis[C/OL] //A17. COPD: SINGLE CELL RNA SEQUENCING, EPIGENETICS, MODELS, AND MACROPHAGES. American Thoracic Society:[S.l.] , 2022. doi:10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a1038
[43] Wang Y, Liao S, Pan ZH, et al. Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis[J]. Free Radic Biol Med, 2022, 186: 1-16. doi:10.1016/j.freeradbiomed.2022.04.014
[44] Zhang ZX, Fu CL, Liu JX, et al. Hypermethylation of the Nrf2 promoter induces ferroptosis by inhibiting the Nrf2-GPX4 axis in COPD[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 3347-3362. doi:10.2147/COPD.S340113
[45] Stockwell BR, Jiang XJ, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6): 478-490. doi:10.1016/j.tcb.2020.02.009
[46] Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium[J]. J Clin Invest, 2018, 128(10): 4639-4653. doi:10.1172/JCI99490
[47] Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis[J]. J Exp Med, 2019, 216(3): 556-570. doi:10.1084/jem.20181776
[48] Habib HM, Ibrahim S, Zaim A, et al. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators[J]. Biomedecine Pharmacother, 2021, 136: 111228. doi:10.1016/j.biopha.2021.111228
[49] Yang M, Lai CL. SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement? [J]. Cell Death Discov, 2020, 6: 130. doi:10.1038/s41420-020-00369-w
[50] Li JC, Lu KM, Sun FL, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]. J Transl Med, 2021, 19(1): 96. doi:10.1186/s12967-021-02745-1
[51] He RY, Liu BH, Xiong R, et al. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against Sepsis-induced acute lung injury[J]. Cell Death Discov, 2022, 8(1): 43. doi:10.1038/s41420-021-00807-3
[52] Liu X, Wang L, Xing QZ, et al. Sevoflurane inhibits ferroptosis: a new mechanism to explain its protective role against lipopolysaccharide-induced acute lung injury[J]. Life Sci, 2021, 275: 119391. doi:10.1016/j.lfs.2021.119391
[53] Liu PF, Feng YT, Li HW, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis[J]. Cell Mol Biol Lett, 2020, 25: 10. doi:10.1186/s11658-020-00205-0
[54] 蒋捍东, 陈碧. 间质性肺疾病的再认识[J]. 中华医学杂志, 2021, 101(20): 1453-1457. doi:10.3760/cma.j.cn112137-2020831-02514 JIANG Handong, CHEN Bi. Interstitial lung disease revisited[J]. National Medical Journal of China, 2021, 101(20): 1453-1457. doi:10.3760/cma.j.cn112137-2020831-02514
[55] He J, Li X, Yu M. Bioinformatics analysis identifies potential ferroptosis key genes in the pathogenesis of pulmonary fibrosis[J]. Front Genet, 2021, 12: 788417. doi:10.3389/fgene.2021.788417
[56] Li YP, Ning SW, Yang Y, et al. A ferroptosis-related gene signature for lung function and quality of life in patients with idiopathic pulmonary fibrosis[All Fields].2021
[57] Gong Y, Wang N, Liu NG, et al. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis[J]. DNA Cell Biol, 2019, 38(7): 725-733. doi:10.1089/dna.2018.4541
[58] Liu X, Zhang JQ, Xie W. The role of ferroptosis in acute lung injury[J]. Mol Cell Biochem, 2022, 477(5): 1453-1461. doi:10.1007/s11010-021-04327-7
[59] Liu TY, Bao R, Wang QS, et al. SiO2-induced ferroptosis in macrophages promotes the development of pulmonary fibrosis in silicosis models[J]. Toxicol Res, 2021, 11(1): 42-51. doi:10.1093/toxres/tfab105
[60] Persson HL. Iron-dependent lysosomal destabilization initiates silica-induced apoptosis in murine macrophages[J]. Toxicol Lett, 2005, 159(2): 124-133. doi:10.1016/j.toxlet.2005.05.002
[61] Takahashi M, Mizumura K, Gon Y, et al. Iron-dependent mitochondrial dysfunction contributes to the pathogenesis of pulmonary fibrosis[J]. Front Pharmacol, 2021, 12: 643980. doi:10.3389/fphar.2021.643980
[62] Yao Y, Chen CL, Yu D, et al. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy[J]. Allergy, 2021, 76(2): 456-470. doi:10.1111/all.14639
[63] 黄嘉莉, 杨淑荣. 变应性鼻炎中信号传导通路的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 125-129. doi:10.6040/j.issn.1673-3770.0.2019.355 HUANG Jiali, YANG Shurong. Advances in research on related signaling pathways in allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 125-129. doi:10.6040/j.issn.1673-3770.0.2019.355
[64] Yao Y, Chen ZA, Zhang H, et al. Selenium-GPX4 axis protects follicular helper T cells from ferroptosis[J]. Nat Immunol, 2021, 22(9): 1127-1139. doi:10.1038/s41590-021-00996-0
[65] Yu SJ, Jia JQ, Zheng JY, et al. Recent progress of ferroptosis in lung diseases[J]. Front Cell Dev Biol, 2021, 9: 789517. doi:10.3389/fcell.2021.789517
[1] 崇维琨,王娟. 联合应用奥马珠单抗在儿童中重度变应性哮喘合并慢性鼻窦炎中的疗效观察[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 21-26.
[2] 朱晗,刘雪霞,张华. 自噬在变应性鼻炎发病的作用机制研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 79-86.
[3] 王丽雪,曾毅,王丽欣,彭先兵. 浸润毕罗芬明胶海绵在功能性鼻内镜鼻窦手术后应用效果的临床观察[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 16-25.
[4] 朱玉,朱新华. TH2细胞因子在2型慢性鼻窦炎伴鼻息肉中的作用机制研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 156-161.
[5] 卢淦,邓玉琴,陶泽璋. 过敏性疾病与糖尿病的相关性及潜在关联机制[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 215-222.
[6] 侯凌霄,展长翠,许安廷,范新泰,王娜. 鼻黏膜组织CD4+ T细胞参与季节性变应性鼻炎发病机制的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 96-104.
[7] 崔宁,王云梦,杨景朴. 2型固有淋巴细胞在慢性鼻窦炎中的作用及调节机制研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 153-159.
[8] 袁玥,付圣尧,姜彦,陈敏. 细胞焦亡在慢性气道炎症性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 166-171.
[9] 翟睿,李园,于敬龙,陈溪,郑酉友,刘兆兰,王俊宏. 揿针治疗变应性鼻炎临床疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 35-45.
[10] 余昪昪,陈颖,邓可斌,易新林,雷西熙,李辉,马欣. 肺炎支原体合并乙型流感病毒感染致急性化脓性扁桃体炎1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 64-66.
[11] 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14.
[12] 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35.
[13] 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42.
[14] 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70.
[15] 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[2] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[3] 隆梅辉,何明强,牟艳云,田利健 . 上颌窦炎性肌纤维母细胞瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 329 -330 .
[4] 邹 俊,卢 奕,褚仁远 . 体外培养人胚晶状体上皮细胞生长特性的研究[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 453 -456 .
[5] 夏文清,郑 敏,满晓飞,李建平 . 手法劈核治疗老年性白内障[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 467 -469 .
[6] 李学昌,王金磊,张玉莉,董文汇,韩在文 . 中药冲洗对鼻黏膜纤毛超微结构的影响[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 522 -524 .
[7] 康宏建,李晓红,王保安,周 涛 . 重型颅脑损伤患者行气管切开术的意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 234 -236 .
[8] 闫 蕊,朱淋洁 . 翼状胬肉显微手术切除后角膜干细胞移植[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 243 -244 .
[9] 黄 方,朱从月 . p21、p73及PTEN在头颈部多原发癌中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 388 -392 .
[10] 徐豪杰,李学忠,陈成芳,王学海 . 鼻内镜下鼻腔泪囊吻合术17例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 132 -134 .