Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (6): 168-178.doi: 10.6040/j.issn.1673-3770.0.2023.511

• Review • Previous Articles    

Anti-cancer mechanism and research progress of kaempferol

WANG Xiaojie1,2, ZHANG Mingjun2, SONG Zheying1,2, CUI Limei2, SONG Xicheng2   

  1. 1. School of Clinical Medicine, Shandong Second Medical University, Weifang 261042, Shandong, China2. Department of Otorhinolaryngology & Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University/Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases/Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai 264000, Shandong, China
  • Published:2025-11-19

Abstract: One of the major targets of medical research is cancer cells, which possess characteristics such as evasion of apoptosis, infinite replication potential, continuous angiogenesis, evasion of immune destruction, and tissue invasion and metastasis. Kaempferol, a flavonoid compound, has shown significant anti-cancer activity with multiple mechanisms of cancer inhibition. We conducted a comprehensive literature review to identify the primary anti-cancer mechanisms of kaempferol. These mechanisms include inhibition of tumour angiogenesis, anti-inflammatory effects, antioxidant properties, cell cycle regulation, inhibition of tumour cell metastasis and induction of tumour cell apoptosis. In addition, progress has been made in researching the combined use of kaempferol with other drugs. However, the clinical use of kaempferol is severely hampered by its poor water solubility and low bioavailability. The lack of solubility has been addressed by the continuous development of nano-drug delivery systems, which provide a solution to this limitation. The integration of nanomaterials to load kaempferol has gained traction in various research institutions, highlighting the pivotal role of nanomaterials in enhancing the stability, delivery efficiency and anticancer efficacy of kaempferol. This development highlights the importance of nanotechnology in improving the application of kaempferol in cancer treatment. We anticipate that this synthesis will stimulate further investigation into the anti-cancer mechanisms and applications of kaempferol.

Key words: Kaempferol, Cancer, Mechanism of action, Combination therapy, Nanomaterials

CLC Number: 

  • R273
[1] Oršoli c N, Jazvinš cak Jembrek M. Molecular and cellular mechanisms of Propolis and its polyphenolic compounds against cancer[J]. Int J Mol Sci, 2022, 23(18): 10479. doi:10.3390/ijms231810479
[2] Ouyang Y, Li JJ, Chen XY, et al. Chalcone derivatives: role in anticancer therapy[J]. Biomolecules, 2021, 11(6): 894. doi:10.3390/biom11060894
[3] Wang YS, Zhang QF, Chen YC, et al. Antitumor effects of immunity-enhancing traditional Chinese medicine[J]. Biomedecine Pharmacother, 2020, 121: 109570. doi:10.1016/j.biopha.2019.109570
[4] Guo ZP, Hu YY, Zhao MY, et al. Prodrug-based versatile nanomedicine with simultaneous physical and physiological tumor penetration for enhanced cancer chemo-immunotherapy[J]. Nano Lett, 2021, 21(9): 3721-3730. doi:10.1021/acs.nanolett.0c04772
[5] Bangar SP, Chaudhary V, Sharma N, et al. Kaempferol: a flavonoid with wider biological activities and its applications[J]. Crit Rev Food Sci Nutr, 2023, 63(28): 9580-9604. doi:10.1080/10408398.2022.2067121
[6] Amjad E, Sokouti B, Asnaashari S. A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound[J]. Cancer Cell Int, 2022, 22(1): 260. doi:10.1186/s12935-022-02673-0
[7] Elebiyo TC, Rotimi D, Evbuomwan IO, et al. Reassessing vascular endothelial growth factor(VEGF)in anti-angiogenic cancer therapy[J]. Cancer Treat Res Commun, 2022, 32: 100620. doi:10.1016/j.ctarc.2022.100620
[8] Qi S, Deng S, Lian Z, et al. Novel drugs with high efficacy against tumor angiogenesis[J]. Int J Mol Sci, 2022, 23(13): 6934. doi:10.3390/ijms23136934
[9] Itatani Y, Kawada K, Yamamoto T, et al. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway[J]. Int J Mol Sci, 2018, 19(4): E1232. doi:10.3390/ijms19041232
[10] Melincovici CS, Bo?瘙塂ca AB, ?瘙塁u?瘙塂man S, et al. Vascular endothelial growth factor(VEGF)- key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59(2): 455-467
[11] Han L, Lin X, Yan Q, et al. PBLD inhibits angiogenesis via impeding VEGF/VEGFR2-mediated microenvironmental cross-talk between HCC cells and endothelial cells[J]. Oncogene, 2022, 41(13): 1851-1865. doi:10.1038/s41388-022-02197-x
[12] Ai XP, Yu PL, Luo LL, et al. Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway[J]. J Ethnopharmacol, 2022, 296: 115453. doi:10.1016/j.jep.2022.115453
[13] Zhang K, Lu J, Mori T, et al. Baicalin increases VEGF expression and angiogenesis by activating the ERR/PGC-1 pathway[J]. Cardiovasc Res, 2011, 89(2): 426-435. doi:10.1093/cvr/cvq296
[14] Luo HT, Rankin GO, Liu LZ, et al. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells[J]. Nutr Cancer, 2009, 61(4): 554-563. doi:10.1080/01635580802666281
[15] Khandia R, Munjal A. Interplay between inflammation and cancer[J]. Adv Protein Chem Struct Biol, 2020, 119: 199-245. doi:10.1016/bs.apcsb.2019.09.004 [PubMed]
[16] ZHENG Lin. Multivariate analysis of risk of gastric cancer caused by chronic gastritis[J]. The Practical Journal of Cancer, 2014, 29(11): 1471-1473. doi:10.3969/j.issn.1001-5930.2014.11.037
[17] Malfertheiner P, Camargo MC, El-Omar E, et al. Helicobacter pylori infection[J]. Nat Rev Dis Primers, 2023, 9(1): 19. doi:10.1038/s41572-023-00431-8
[18] Rahman HH, Niemann D, Munson-McGee SH. Association between asthma, chronic bronchitis, emphysema, chronic obstructive pulmonary disease, and lung cancer in the US population[J]. Environ Sci Pollut Res, 2023, 30(8): 20147-20158. doi:10.1007/s11356-022-23631-3
[19] Yao DB, Dong M, Dai CL, et al. Inflammation and inflammatory cytokine contribute to the initiation and development of ulcerative colitis and its associated cancer[J]. Inflamm Bowel Dis, 2019, 25(10): 1595-1602. doi:10.1093/ibd/izz149
[20] Hu NH, Wang C, Dai XY, et al. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway[J]. J Ethnopharmacol, 2020, 248: 112361. doi:10.1016/j.jep.2019.112361
[21] Sun ZJ, Li Q, Hou RR, et al. Kaempferol-3-O-glucorhamnoside inhibits inflammatory responses via MAPK and NF-κB pathways in vitro and in vivo[J]. Toxicol Appl Pharmacol, 2019, 364: 22-28. doi:10.1016/j.taap.2018.12.008
[22] Neganova M, Liu JQ, Aleksandrova Y, et al. Therapeutic influence on important targets associated with chronic inflammation and oxidative stress in cancer treatment[J]. Cancers, 2021, 13(23): 6062. doi:10.3390/cancers13236062
[23] Imran M, Rauf A, Ali Shah Z, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review[J]. Phytother Res, 2019, 33(2): 263-275. doi:10.1002/ptr.6227
[24] Haque E, Karim MR, Salam Teeli A, et al. Molecular mechanisms underlying hepatocellular carcinoma induction by aberrant NRF2 activation-mediated transcription networks: interaction of NRF2-KEAP1 controls the fate of hepatocarcinogenesis[J]. Int J Mol Sci, 2020, 21(15): 5378. doi:10.3390/ijms21155378
[25] Saw CL, Guo Y, Yang AY, et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway[J]. Food Chem Toxicol, 2014, 72: 303-311. doi:10.1016/j.fct.2014.07.038
[26] Sharma N, Biswas S, Al-Dayan N, et al. Antioxidant role of kaempferol in prevention of hepatocellular carcinoma[J]. Antioxidants, 2021, 10(9): 1419. doi:10.3390/antiox10091419
[27] Sun Y, Liu Y, Ma X, et al. The influence of cell cycle regulation on chemotherapy[J]. Int J Mol Sci, 2021, 22(13): 6923. doi:10.3390/ijms22136923
[28] Hafner A, Bulyk ML, Jambhekar A, et al. The multiple mechanisms that regulate p53 activity and cell fate[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 199-210. doi:10.1038/s41580-019-0110-x
[29] Almatroudi A, Allemailem KS, Alwanian WM, et al. Effects and mechanisms of kaempferol in the management of cancers through modulation of inflammation and signal transduction pathways[J]. Int J Mol Sci, 2023, 24(10): 8630. doi:10.3390/ijms24108630
[30] Choi EJ, Ahn WS. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells[J]. Nutr Res Pract, 2008, 2(4): 322. doi:10.4162/nrp.2008.2.4.322
[31] Zhu L, Xue LJ. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells[J]. Oncol Res, 2019, 27(6): 629-634. doi:10.3727/096504018x15228018559434
[32] Song HB, Bao JJ, Wei YZ, et al. Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study[J]. Oncology Reports, 2015, 33(2): 868-874. doi:10.3892/or.2014.3662
[33] Cho HJ, Park JHY. Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells[J]. J Cancer Prev, 2013, 18(3): 257-263. doi:10.15430/jcp.2013.18.3.257
[34] Wu P, Meng XF, Zheng HD, et al. Kaempferol attenuates ROS-induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer[J]. Molecules, 2018, 23(10): 2592. doi:10.3390/molecules23102592
[35] Ruan GY, Ye LX, Lin JS, et al. An integrated approach of network pharmacology, molecular docking, and experimental verification uncovers kaempferol as the effective modulator of HSD17B1 for treatment of endometrial cancer[J]. J Transl Med, 2023, 21(1): 204. doi:10.1186/s12967-023-04048-z
[36] Kubina R, Krzykawski K, Dziedzic A, et al. Kaempferol and fisetin-related signaling pathways induce apoptosis in head and neck cancer cells[J]. Cells, 2023, 12(12): 1568. doi:10.3390/cells12121568
[37] Spirina LV, Yurmazov ZA, Gorbunov AK, et al. Molecular protein and expression profile in the primary tumors of clear cell renal carcinoma and metastases[J]. Cells, 2020, 9(7): 1680. doi:10.3390/cells9071680
[38] Chang PH, Chen MC, Tsai YP, et al. Interplay between desmoglein2 and hypoxia controls metastasis in breast cancer[J]. Proc Natl Acad Sci USA, 2021, 118(3): e2014408118. doi:10.1073/pnas.2014408118
[39] Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis[J]. Critical Reviews in Oncogenesis, 2013, 18(1/2): 43-73. doi:10.1615/critrevoncog.v18.i1-2.40
[40] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. doi:10.1016/j.cell.2011.02.013
[41] Huang J, Li HZ, Ren GS. Epithelial-mesenchymal transition and drug resistance in breast cancer(Review)[J]. International Journal of Oncology, 2015, 47(3): 840-848. doi:10.3892/ijo.2015.3084
[42] Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. doi:10.1016/j.tcb.2018.12.001
[43] Lee GA, Choi KC, Hwang KA. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells[J]. Environ Toxicol Pharmacol, 2017, 49: 48-57. doi:10.1016/j.etap.2016.11.016
[44] Jo E, Park SJ, Choi YS, et al. Kaempferol suppresses transforming growth factor-β1-induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at threonine-179[J]. Neoplasia, 2015, 17(7): 525-537. doi:10.1016/j.neo.2015.06.004
[45] Mondal S, Adhikari N, Banerjee S, et al. Matrix metalloproteinase-9(MMP-9)and its inhibitors in cancer: a minireview[J]. Eur J Med Chem, 2020, 194: 112260. doi:10.1016/j.ejmech.2020.112260
[46] Zhang XY, Fan JC, Guo F, et al. Effect of kaempferol on the biological behavior of human colon cancer via regulating MMP1, MMP2, and MMP9[J]. J Oncol, 2022, 2022: 2841762. doi:10.1155/2022/2841762
[47] Chen HJ, Lin CM, Lee CY, et al. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells[J]. Oncology Reports, 2013, 30(2): 925-932. doi:10.3892/or.2013.2490
[48] Lin CW, Chen PN, Chen MK, et al. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells[J]. PLoS One, 2013, 8(11): e80883. doi:10.1371/journal.pone.0080883
[49] Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer[J]. Int J Mol Sci, 2022, 23(3): 1328. doi:10.3390/ijms23031328
[50] Kashyap D, Sharma A, Tuli HS, et al. Kaempferol-A dietary anticancer molecule with multiple mechanisms of action: recent trends and advancements[J]. J Funct Foods, 2017, 30: 203-219. doi:10.1016/j.jff.2017.01.022
[51] Wang FJ, Wang L, Qu C, et al. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling[J]. BMC Cancer, 2021, 21(1): 396. doi:10.1186/s12885-021-08158-z
[52] Christine A, Park MK, Song SJ, et al. The equilibrium of tumor suppression: DUBs as active regulators of PTEN[J]. Exp Mol Med, 2022, 54(11): 1814-1821. doi: 10.1038/s12276-022-00887-w
[53] Xie F, Su M, Qiu W, et al. Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN[J]. International journal of molecular sciences, 2013, 14(11): 21215-21226. doi:10.3390/ijms141121215
[54] Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer[J]. Genes Dev, 2016, 30(17): 1913-1930. doi:10.1101/gad.287524.116
[55] Zhou Q, Fang G, Pang YZ, et al. Combination of kaempferol and docetaxel induces autophagy in prostate cancer cells in vitro and in vivo[J]. Int J Mol Sci, 2023, 24(19): 14519. doi:10.3390/ijms241914519
[56] Kim TW, Lee SY, Kim M, et al. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells[J]. Cell Death Dis, 2018, 9(9): 875. doi:10.1038/s41419-018-0930-1
[57] Su ZY, Yang ZZ, Xu YQ, et al. Apoptosis, autophagy, necroptosis, and cancer metastasis[J]. Mol Cancer, 2015, 14: 48. doi:10.1186/s12943-015-0321-5
[58] Chen SQ, Ma J, Yang L, et al. Anti-glioblastoma activity of kaempferol via programmed cell death induction: involvement of autophagy and pyroptosis[J]. Front Bioeng Biotechnol, 2020, 8: 614419. doi:10.3389/fbioe.2020.614419
[59] Ganapathy-Kanniappan S, Geschwind JF H. Tumor glycolysis as a target for cancer therapy: progress and prospects[J]. Mol Cancer, 2013, 12: 152. doi:10.1186/1476-4598-12-152
[60] Yao SH, Wang XW, Li CG, et al. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway[J]. Tumor Biology, 2016, 37(8): 10247-10256. doi:10.1007/s13277-016-4912-6
[61] Wu HL, Cui MM, Li CL, et al. Kaempferol reverses aerobic glycolysis via miR-339-5p-mediated PKM alternative splicing in colon cancer cells[J]. J Agric Food Chem, 2021, 69(10): 3060-3068. doi:10.1021/acs.jafc.0c07640
[62] Wu HL, Du JE, Li CL, et al. Kaempferol can reverse the 5-fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis[J]. Int J Mol Sci, 2022, 23(7): 3544. doi:10.3390/ijms23073544
[63] Wang XN, Yang YT, An YT, et al. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer[J]. Biomedicine & pharmacotherapy, 2019, 117: 109086. doi:10.1016/j.biopha.2019.109086
[64] Huang W, Chen LQ, Kang L, et al. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs[J]. Adv Drug Deliv Rev, 2017, 115: 82-97. doi:10.1016/j.addr.2017.06.004
[65] Wei GQ, Wang Y, Yang G, et al. Recent progress in nanomedicine for enhanced cancer chemotherapy[J]. Theranostics, 2021, 11(13): 6370-6392. doi:10.7150/thno.57828
[66] Zhou JB, Liu YH, Chen J, et al. Kaempferol suppresses glioma progression and synergistically enhances the antitumor activity of gefitinib by inhibiting the EGFR/SRC/STAT3 signaling pathway[J]. Drug Development Research, 2023, 84(3): 582-600. doi:10.1002/ddr.22048
[67] Nair B, Anto RJ, Sabitha M, et al. Kaempferol-mediated sensitization enhances chemotherapeutic efficacy of sorafenib against hepatocellular carcinoma: an in silico and in vitro approach[J]. Adv Pharm Bull, 2020, 10(3): 472-476. doi:10.34172/apb.2020.058
[68] Catalán M, Rodríguez C, Olmedo I, et al. Kaempferol induces cell death and sensitizes human head and neck squamous cell carcinoma cell lines to cisplatin[J]. Adv Exp Med Biol, 2021, 1326: 95-109. doi:10.1007/5584_2020_603
[69] Riahi-Chebbi I, Souid S, Othman H, et al. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells[J]. Sci Rep, 2019, 9(1): 195. doi:10.1038/s41598-018-36808-z
[70] Li QY, Wei LH, Lin S, et al. Synergistic effect of kaempferol and 5-fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway[J]. Mol Med Report, 2019: 728-734. doi:10.3892/mmr.2019.10296
[71] Wang Z, Sun WS, Sun X, et al. Kaempferol ameliorates Cisplatin induced nephrotoxicity by modulating oxidative stress, inflammation and apoptosis via ERK and NF-κB pathways[J]. AMB Express, 2020, 10(1): 58. doi:10.1186/s13568-020-00993-w
[72] Yang G, Xing J, Aikemu B, et al. Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation, migration, and invasion of liver cancer[J]. Oncol Rep, 2021, 45(4): 32. doi:10.3892/or.2021.7983
[73] Liang SQ, Marti TM, Dorn P, et al. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer[J]. Cell Death Dis, 2015, 6(7): e1824. doi:10.1038/cddis.2015.195
[74] 王钰. 新型纳米水凝胶药物载体设计、合成及其抗肿瘤应用研究[D]. 南方医科大学, 2022
[75] Qanash H, Bazaid AS, Aldarhami A, et al. Phytochemical characterization and efficacy of Artemisia judaica extract loaded chitosan nanoparticles as inhibitors of cancer proliferation and microbial growth[J]. Polymers, 2023, 15(2): 391. doi:10.3390/polym15020391
[76] Coutinho TE, Souto EB, Silva AM. Selected flavonoids to target melanoma: a perspective in nanoengineering delivery systems[J]. Bioengineering, 2022, 9(7): 290. doi:10.3390/bioengineering9070290
[77] Luo HT, Jiang BB, Li BY, et al. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability[J]. Int J Nanomedicine, 2012, 7: 3951-3959. doi:10.2147/IJN.S33670
[78] He W, Zhang JF, Ju JL, et al. Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions[J]. Drug Deliv Transl Res, 2023, 13(11): 2885-2902. doi:10.1007/s13346-023-01357-0
[79] Ma YF, Liu JL, Cui XY, et al. Hyaluronic acid modified nanostructured lipid carrier for targeting delivery of kaempferol to NSCLC: preparation, optimization, characterization, and performance evaluation in vitro[J]. Molecules, 2022, 27(14): 4553. doi:10.3390/molecules27144553
[80] Mollaei M, Homayouni Tabrizi M, Es-Haghi A. The folate-linked chitosan-coated Kaempferol/HSA nano-transporters(FCKH-NTs)as the selective apoptotic inducer in human MCF-7 breast cancer cell line[J]. Drug Dev Ind Pharm, 2023, 49(10): 658-665. doi:10.1080/03639045.2023.2268739
[81] Nicoleti LR, di Filippo LD, Duarte JL, et al. Development, characterization and in vitro cytotoxicity of kaempferol-loaded nanostructured lipid carriers in glioblastoma multiforme cells[J]. Colloids Surf B Biointerfaces, 2023, 226: 113309. doi:10.1016/j.colsurfb.2023.113309
[82] Govindaraju S, Roshini A, Lee MH, et al. Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells[J]. Int J Nanomedicine, 2019, 14: 5147-5157. doi:10.2147/IJN.S209773
[83] Bharathi D, Ranjithkumar R, Nandagopal JGT, et al. Green synthesis of chitosan/silver nanocomposite using kaempferol for triple negative breast cancer therapy and antibacterial activity[J]. Environ Res, 2023, 238(Pt 1): 117109. doi:10.1016/j.envres.2023.117109
[84] Li YL, Zhou S, Song HZ, et al. CaCO3 nanoparticles incorporated with KAE to enable amplified calcium overload cancer therapy[J]. Biomaterials, 2021, 277: 121080. doi:10.1016/j.biomaterials.2021.121080
[85] Ibrahim FAR, Hussein NA, Soliman AYM, et al. Chitosan-loaded piperlongumine nanoparticles and kaempferol enhance the anti-cancer action of doxorubicin in targeting of Ehrlich solid adenocarcinoma: in vivo and in silico modeling study[J]. Medical Oncology, 2024, 41(2): 61. doi:10.1007/s12032-023-02282-5
[1] PAN Linlin, WAN Jiaming, LI Yue, HE Long. Autophagy-related long noncoding RNA is a prognostic indicator for head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(6): 97-107.
[2] LIU Danfeng, PAN Qingchun, LI Daibo, FENG Xuefei, REN Jian. Burden of larynx cancer attributable to excessive alcohol consumption and prediction of future trends in China from 1990 to 2021 [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(5): 61-69.
[3] XU Fei, ZHU Guangxi, WANG Kexin. Construction of a decision tree algorithm to predict the risk of radiation oral mucositis in nasopharyngeal carcinoma patients after radiotherapy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 42-48.
[4] YANG Ming, LIU Xuexia, ZHANG Hua. Progress of m6A recognition protein IGF2BPs in head and neck cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(3): 153-161.
[5] XIE Feng, XU Zhenju, WU Ce, LIU Jie, ZANG Chuanshan, ZHANG Longxiao, HAN Min. Clinicopathologic and survival analysis of laryngeal neuroendocrine neoplasm in 26 cases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(2): 79-86.
[6] QU Xiangyu, ZHU Han, LIU Zhonglu, MU Yakui, GUO Wentao, ZHANG Hua. Application of epiglottic tongue flap in supraglottic defect repair of laryngeal cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 77-84.
[7] WANG Jingsong, YU Can, ZHANG Xi, DENG Qicheng, XIE Zhuoliang, ZHAO Rui, WEN Bei, LIU Hai. Expression and clinical significance of KRT4 in laryngeal carcinoma and adjacent normal mucosal tissues [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 12-17.
[8] HU Tingting, WANG Yuehua. Advances in research on the relationship between obstructive sleep apnea and breast cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 41-45.
[9] ZHANG Zhuping, YE Qi, GUO Bei, LIN Ling. Diagnostic utility of folate receptor-positive circulating tumor cells in patients with laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 50-53.
[10] ZHANG Xi, DENG Qicheng, ZHANG Zhen, CHEN Yao, WANG Jingsong, ZHAO Rui, LIU Hai. Effect of nutritional support on postoperative pharyngeal fistula after laryngeal cancer surgery: a Meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 51-59.
[11] XU Chong, WANG Xiaoting, YI Hongliang. Single-cell sequencing analysis of laryngeal cancer and its microenvironmental metabolism-related target genes [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 33-38.
[12] HUANG Hengfeng, MA Kunpeng, YANG Di, ZHANG Lijun, ZHANG Shenglin. Expression and clinical significance of miR-181b-5P and EPB41L3 protein in laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 41-46.
[13] SONG QingOverview,SONG XichengGuidance. Research progress of anlotinib combination therapy in cancer treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 106-112.
[14] LI Lijie, TIAN Xiufen. Forty cases of early glottic cancer treated by CO2 laser surgery combined with radiofrequency ablation [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 79-85.
[15] WANG MeiOverview,LI ZhihaiGuidance. Laryngeal cancer stem cells: potential therapeutic targets for overcoming multidrug resistance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 120-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!