Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 84-91.doi: 10.6040/j.issn.1673-3770.0.2021.562
Previous Articles Next Articles
LI Jiani1, ZHU Dongdong1,2Overview,MENG Cuida1,2
CLC Number:
[1] 李华斌, 赖玉婷, 姜文秀. 慢性鼻窦炎的内表型研究进展及精准治疗[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 9-13. doi:10.6040/j.issn.1673-3770.1.2018.043. LI Huabin, LAI Yuting, JIANG Wenxiu. Endotypes and precision medicine in chronic sinusitis treatment[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 9-13. doi:10.6040/j.issn.1673-3770.1.2018.043. [2] Dykewicz MS, Hamilos DL. Rhinitis and sinusitis[J]. J Allergy Clin Immunol, 2010, 125(2): 103-115. doi: 10.1016/j.jaci.2009.12.989. [3] Chaaban MR, Walsh EM, Woodworth BA. Epidemiology and differential diagnosis of nasal polyps[J]. Am J Rhinol Allergy, 2013, 27(6): 473-478. doi:10.2500/ajra.2013.27.3981. [4] North ML, Ellis AK. The role of epigenetics in the developmental origins of allergic disease[J]. Ann Allergy Asthma Immunol, 2011, 106(5): 355-361; quiz362. doi:10.1016/j.anai.2011.02.008. [5] Ng HH, Adrian B. DNA methylation and chromatin modification[J]. Curr Opin Genet Dev, 1999, 9(2): 158-163. doi:10.1016/S0959-437X(99)80024-0. [6] Zheng YB, Zhao Y, Yue LY, et al. Pilot study of DNA methylation in the pathogenesis of chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2015, 53(4): 345-352. doi:10.4193/Rhino14.086. [7] Hew KM, Walker AI, Kohli A, et al. Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells[J]. Clin Exp Allergy, 2015, 45(1): 238-248. doi:10.1111/cea.12377. [8] White GP, Hollams EM, Yerkovich ST, et al. CpG methylation patterns in the IFN-γ promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics[J]. Pediatr Allergy Immunol, 2006, 17(8): 557-564. doi:10.1111/j.1399-3038.2006.00465.x. [9] Jundi K, Greene C. Transcription of interleukin-8: how altered regulation can affect cystic fibrosis lung disease[J]. Biomolecules, 2015, 5(3): 1386-1398. doi:10.3390/biom5031386. [10] van Drunen CM, Reinartz S, Wigman J, et al. Inflammation in chronic rhinosinusitis and nasal polyposis[J]. Immunol Allergy Clin North Am, 2009, 29(4): 621-629. doi:10.1016/j.iac.2009.07.003. [11] Li JY, Jiao J, Wang M, et al. Hypomethylation of the IL8 promoter in nasal epithelial cells of patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2019, 144(4): 993-1003.e12. doi:10.1016/j.jaci.2019.06.042. [12] Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP[J]. Nat Immunol, 2002, 3(7): 673-680. doi:10.1038/ni805. [13] Nagarkar DR, Poposki JA, Tan BK, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2013, 132(3): 593-600.e12. doi:10.1016/j.jaci.2013.04.005. [14] Kimura S, Pawankar R, Mori S, et al. Increased expression and role of thymic stromal lymphopoietin in nasal polyposis[J]. Allergy Asthma Immunol Res, 2011, 3(3): 186-193. doi:10.4168/aair.2011.3.3.186. [15] Li JY, Jiao J, Gao YB, et al. Association between methylation in nasal epithelial TSLP gene and chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol, 2019, 15(1): 71. doi:10.1186/s13223-019-0389-3. [16] Heljasvaara R, Nyberg P, Luostarinen J, et al. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases[J]. Exp Cell Res, 2005, 307(2): 292-304. doi:10.1016/j.yexcr.2005.03.021. [17] Ergün S, Kilic N, Wurmbach JH, et al. Endostatin inhibits angiogenesis by stabilization of newly formed endothelial tubes[J]. Angiogenesis, 2001, 4(3): 193-206. doi:10.1023/a: 1014027218980. [18] Zhang Y, Qu ZH, Cui M, et al. Combined endostatin and TRAIL gene transfer suppresses human hepatocellular carcinoma growth and angiogenesis in nude mice[J]. Cancer Biol Ther, 2009, 8(5): 466-473. doi:10.4161/cbt.8.5.7687. [19] Suzaki Y, Hamada K, Sho M, et al. A potent antiangiogenic factor, endostatin prevents the development of asthma in a murine model[J]. J Allergy Clin Immunol, 2005, 116(6): 1220-1227. doi:10.1016/j.jaci.2005.08.052. [20] Kidoguchi M, Noguchi E, Nakamura T, et al. DNA methylation of proximal PLAT promoter in chronic rhinosinusitis with nasal polyps[J]. Am J Rhinol Allergy, 2018, 32(5): 374-379. doi:10.1177/1945892418782236. [21] Takabayashi T, Kato A, Peters AT, et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression[J]. Am J Respir Crit Care Med, 2013, 187(1): 49-57. doi:10.1164/rccm.201207-1292OC. [22] Kim DY, Cho SH, Takabayashi T, et al. Chronic rhinosinusitis and the coagulation system[J]. Allergy Asthma Immunol Res, 2015, 7(5): 421-430. doi:10.4168/aair.2015.7.5.421. [23] Kim JY, Kim DK, Yu MS, et al. Role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2018, 17(1): 1219-1227. doi:10.3892/mmr.2017.8001. [24] Velimir GM, Hrvoje C, Livije K, et al. Surgical treatment for nasal polyposis: predictors of outcome[J]. Eur Arch Oto Rhino Laryngol Off J Eur Fed Oto Rhino Laryngol Soc EUFOS Affil Ger Soc Oto Rhino Laryngol Head Neck Surg, 2015, 272(12): 3735-3743. doi:10.1007/s00405-015-3519-7. [25] Sreeparvathi A, Kalyanikuttyamma LK, Kumar M, et al. Significance of blood eosinophil count in patients with chronic rhinosinusitis with nasal polyposis[J]. J Clin Diagn Res, 2017, 11(2): MC08-MC11. doi:10.7860/JCDR/2017/25320.9445. [26] Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells[J]. Proc Natl Acad Sci USA, 2007, 104(23): 9685-9690. doi:10.1073/pnas.0702859104. [27] Malbon CC. Frizzleds: new members of the superfamily of G-protein-coupled receptors[J]. Front Biosci, 2004, 9: 1048-1058. doi:10.2741/1308. [28] Lin LZ, Cui L, Zhou WL, et al. Β-Catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis[J]. PNAS, 2007, 104(22): 9313-9318. doi:10.1073/pnas.0700923104. [29] Kim JY, Cha MJ, Park YS, et al. Upregulation of FZD5 in eosinophilic chronic rhinosinusitis with nasal polyps by epigenetic modification[J]. Mol Cells, 2019, 42(4): 345-355. doi:10.14348/molcells.2019.2418. [30] Benard A, Goossens-Beumer IJ, van Hoesel AQ, et al. Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer[J]. BMC Cancer, 2014, 14: 531. doi:10.1186/1471-2407-14-531. [31] Snowden AW, Gregory PD, Case CC, et al. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo[J]. Curr Biol, 2002, 12(24): 2159-2166. doi:10.1016/s0960-9822(02)01391-x. [32] Bartke T, Vermeulen M, Xhemalce B, et al. Nucleosome-interacting proteins regulated by DNA and histone methylation[J]. Cell, 2010, 143(3): 470-484. doi:10.1016/j.cell.2010.10.012. [33] Fuks F. DNA methylation and histone modifications: teaming up to silence genes[J]. Curr Opin Genet Dev, 2005, 15(5): 490-495. doi:10.1016/j.gde.2005.08.002. [34] Andrew J, Tony B, Kouzarides. Regulation of chromatin by histone modifications[J]. Cell Research, 2011, 21(3): 381-395. [35] Lal G, Bromberg JS. Epigenetic mechanisms of regulation of Foxp3 expression[J]. Blood, 2009, 114(18): 3727-3735. doi:10.1182/blood-2009-05-219584. [36] Thomas LR, Miyashita H, Cobb RM, et al. Functional analysis of histone methyltransferase g9a in B and T lymphocytes[J]. J Immunol, 2008, 181(1): 485-493. doi:10.4049/jimmunol.181.1.485. [37] Han SY, Lu J, Zhang Y, et al. Recruitment of histone deacetylase 4 by transcription factors represses interleukin-5 transcription[J]. Biochem J, 2006, 400(3): 439-448. doi:10.1042/BJ20061085. [38] Lee JH, Chung SW, Park IH, et al. Expression of extracellular matrix metalloproteinase inducer in nasal polyps[J]. Am J Rhinol Allergy, 2010, 24(6): 127-131. doi:10.2500/ajra.2010.24.3503. [39] Cho JS, Moon YM, Park IH, et al. Epigenetic regulation of myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts[J]. Clin Exp Allergy, 2012, 42(6): 872-882. doi:10.1111/j.1365-2222.2011.03931.x. [40] Cho JS, Moon YM, Park IH, et al. Effects of histone deacetylase inhibitor on extracellular matrix production in human nasal polyp organ cultures[J]. Am J Rhinol Allergy, 2013, 27(1): 18-23. doi:10.2500/ajra.2013.27.3827. [41] Yang WW, Ernst P. SET/MLL family proteins in hematopoiesis and leukemia[J]. Int J Hematol, 2017, 105(1): 7-16. doi:10.1007/s12185-016-2118-8. [42] Theocharisa S, Margeli A, Kouraklis G. Peroxisome proliferator activated receptor-gamma ligands as potent antineoplastic agents[J]. Curr Med Chem Anticancer Agents, 2003, 3(3): 239-251. doi:10.2174/1568011033482431. [43] Wei JJ, Wu XY, Peng Y, et al. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion[J]. Clin Cancer Res, 2011, 17(6): 1297-1305. doi:10.1158/1078-0432.CCR-10-0993. [44] Bartel DP. Metazoan microRNAs[J]. Cell, 2018, 173(1): 20-51. doi:10.1016/j.cell.2018.03.006. [45] Turner ML, Schnorfeil FM, Brocker T. microRNAs regulate dendritic cell differentiation and function[J]. J Immunol, 2011, 187(8): 3911-3917. doi:10.4049/jimmunol.1101137. [46] Luo X, Han MM, Liu JQ, et al. Epithelial cell-derived micro RNA-146a generates interleukin-10-producing monocytes to inhibit nasal allergy[J]. Sci Rep, 2015, 5: 15937. doi:10.1038/srep15937. [47] Elbehidy RM, Youssef DM, El-Shal AS, et al. microRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children[J]. Mol Immunol, 2016, 71: 107-114. doi:10.1016/j.molimm.2015.12.015. [48] Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2012, 185(2): 140-151. doi:10.1164/rccm.201103-0456OC. [49] Xuan LJ, Luan G, Wang Y, et al. microRNAs regulating mucin type O-glycan biosynthesis and transforming growth factor β signaling pathways in nasal mucosa of patients with chronic rhinosinusitis with nasal polyps in Northern China[J]. Int Forum Allergy Rhinol, 2019, 9(1): 106-113. doi:10.1002/alr.22230. [50] Luo XQ, Shao JB, Xie RD, et al. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis[J]. Oncotarget, 2017, 8(30): 48915-48921. doi:10.18632/oncotarget.16555. [51] Qing X, Zhang YQ, Peng Y, et al. miR-142-3p regulates inflammatory response by contributing to increased TNF-α in chronic rhinosinusitis with nasal polyposis[J]. Ear Nose Throat J, 2021, 100(1): NP50-NP56. doi:10.1177/0145561319847972. [52] Mitoma H, Horiuchi T, Tsukamoto H, et al. Molecular mechanisms of action of anti-TNF-α agents - Comparison among therapeutic TNF-α antagonists[J]. Cytokine, 2018, 101: 56-63. doi:10.1016/j.cyto.2016.08.014. [53] Thorley AJ, Ford PA, Giembycz MA, et al. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages[J]. J Immunol, 2007, 178(1): 463-473. doi:10.4049/jimmunol.178.1.463. [54] Ma ZX, Shen Y, Zeng Q, et al. miR-150-5p regulates EGR2 to promote the development of chronic rhinosinusitis via the DC-Th axis[J]. Int Immunopharmacol, 2018, 54: 188-197. doi:10.1016/j.intimp.2017.11.011. [55] Doncel-Pérez E, Mateos-Hernández L, Pareja E, et al. Expression of early growth response gene-2 and regulated cytokines correlates with recovery from guillain-Barré syndrome[J]. J Immunol, 2016, 196(3): 1102-1107. doi:10.4049/jimmunol.1502100. [56] Kim TD, Jung HR, Seo SH, et al. microRNA-150 modulates intracellular Ca2+ levels in naïve CD8+ T cells by targeting TMEM20[J]. Sci Rep, 2017, 7(1): 2623. doi:10.1038/s41598-017-02697-x. [57] Yu HL, Ju JB, Liu JD, et al. Aberrant expression of miR-663 and transforming growth factor-β1 in nasal polyposis in children[J]. Exp Ther Med, 2018, 15(5): 4550-4556. doi:10.3892/etm.2018.5927. [58] Park IH, Um JY, Hong SM, et al. Metformin reduces TGF-β1-induced extracellular matrix production in nasal polyp-derived fibroblasts[J]. Otolaryngol Head Neck Surg, 2014, 150(1): 148-153. doi:10.1177/0194599813513880. [59] Luo Q, Zhang ZY, Liu D, et al. Human neutrophil elastase induces MUC5AC overexpression in chronic rhinosinusitis through tumour necrosis factor-α converting enzyme[J]. Acta Otolaryngol, 2016, 136(6): 641-648. doi:10.3109/00016489.2016.1144145. [60] Wang J, Zhu MC, Wang LL, et al. Amphiregulin potentiates airway inflammation and mucus hypersecretion induced by urban particulate matter via the EGFR-PI3Kα-AKT/ERK pathway[J]. Cell Signal, 2019, 53: 122-131. doi:10.1016/j.cellsig.2018.10.002. [61] Xu R, Li Q, Zhou J, et al. Secretoneurin induces airway mucus hypersecretion by enhancing the binding of EGF to NRP1[J]. Cell Physiol Biochem, 2014, 33(2): 446-456. doi:10.1159/000358625. [62] Yan DQ, Ye Y, Zhang J, et al. Human neutrophil elastase induces MUC5AC overexpression in chronic rhinosinusitis through miR-146a[J]. Am J Rhinol Allergy, 2020, 34(1): 59-69. doi:10.1177/1945892419871798. [63] Choksi SP, Lauter G, Swoboda P, et al. Switching on Cilia: transcriptional networks regulating ciliogenesis[J]. Development, 2014, 141(7): 1427-1441. doi:10.1242/dev.074666. [64] Spassky N, Meunier A. The development and functions of multiciliated epithelia[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 423-436. doi:10.1038/nrm.2017.21. [65] Callejas-Díaz B, Fernandez G, Fuentes M, et al. Integrated mRNA and microRNA transcriptome profiling during differentiation of human nasal polyp epithelium reveals an altered ciliogenesis[J]. Allergy, 2020, 75(10): 2548-2561. doi:10.1111/all.14307. [66] Diesch J, Zwick A, Garz AK, et al. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers[J]. Clin Epigenetics, 2016, 8: 71. doi:10.1186/s13148-016-0237-y. [67] Fenaux P, Mufti GJ, Hellström-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia[J]. J Clin Oncol, 2010, 28(4): 562-569. doi:10.1200/JCO.2009.23.8329. [68] Yeo NK, Park WJ, Eom DW, et al. Effects of azathioprine and its metabolites on inflammatory cytokines in human nasal polyp organ cultures[J]. Int Forum Allergy Rhinol, 2019, 9(6): 648-655. doi:10.1002/alr.22303. [69] Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases[J]. Chonnam Med J, 2016, 52(1): 1-11. doi:10.4068/cmj.2016.52.1.1. |
[1] | WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124. |
[2] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[3] | YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29. |
[4] | LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35. |
[5] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[6] | WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49. |
[7] | YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55. |
[8] | GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63. |
[9] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[10] | QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77. |
[11] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[12] | YU Longgang,JIANG Yan. Research progress on the correlation between nasal bacterial microbiome and chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 92-97. |
[13] | CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109. |
[14] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
[15] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
|