Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 84-91.doi: 10.6040/j.issn.1673-3770.0.2021.562

Previous Articles     Next Articles

The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps

LI Jiani1, ZHU Dongdong1,2Overview,MENG Cuida1,2   

  1. 1. Department of Otorhinolaryngology & Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China;
    2. Jilin provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic, Changchun 130033, Jilin, China
  • Published:2022-06-15

Abstract: The pathogenesis of chronic rhinosinusitis(CRS)with nasal polyps has not been fully elucidated. Epigenetics mainly refers to changes in gene expression levels based on non-gene sequence changes, such as DNA methylation, histone modification, and microRNA regulation. In this review, the role of epigenetic modification of CRS-related genes and changes in the expression levels of corresponding cytokines and other related proteins in the pathogenesis of CRS are discussed. The aim of this review is to provide new directions for research on the pathogenesis of CRS and the development of therapeutic methods.

Key words: Chronic Rhinosinusitis, Nasal Polyps, Epigenetics, Methylation, Pathogenesis

CLC Number: 

  • R765.4
[1] 李华斌, 赖玉婷, 姜文秀. 慢性鼻窦炎的内表型研究进展及精准治疗[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 9-13. doi:10.6040/j.issn.1673-3770.1.2018.043. LI Huabin, LAI Yuting, JIANG Wenxiu. Endotypes and precision medicine in chronic sinusitis treatment[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 9-13. doi:10.6040/j.issn.1673-3770.1.2018.043.
[2] Dykewicz MS, Hamilos DL. Rhinitis and sinusitis[J]. J Allergy Clin Immunol, 2010, 125(2): 103-115. doi: 10.1016/j.jaci.2009.12.989.
[3] Chaaban MR, Walsh EM, Woodworth BA. Epidemiology and differential diagnosis of nasal polyps[J]. Am J Rhinol Allergy, 2013, 27(6): 473-478. doi:10.2500/ajra.2013.27.3981.
[4] North ML, Ellis AK. The role of epigenetics in the developmental origins of allergic disease[J]. Ann Allergy Asthma Immunol, 2011, 106(5): 355-361; quiz362. doi:10.1016/j.anai.2011.02.008.
[5] Ng HH, Adrian B. DNA methylation and chromatin modification[J]. Curr Opin Genet Dev, 1999, 9(2): 158-163. doi:10.1016/S0959-437X(99)80024-0.
[6] Zheng YB, Zhao Y, Yue LY, et al. Pilot study of DNA methylation in the pathogenesis of chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2015, 53(4): 345-352. doi:10.4193/Rhino14.086.
[7] Hew KM, Walker AI, Kohli A, et al. Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells[J]. Clin Exp Allergy, 2015, 45(1): 238-248. doi:10.1111/cea.12377.
[8] White GP, Hollams EM, Yerkovich ST, et al. CpG methylation patterns in the IFN-γ promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics[J]. Pediatr Allergy Immunol, 2006, 17(8): 557-564. doi:10.1111/j.1399-3038.2006.00465.x.
[9] Jundi K, Greene C. Transcription of interleukin-8: how altered regulation can affect cystic fibrosis lung disease[J]. Biomolecules, 2015, 5(3): 1386-1398. doi:10.3390/biom5031386.
[10] van Drunen CM, Reinartz S, Wigman J, et al. Inflammation in chronic rhinosinusitis and nasal polyposis[J]. Immunol Allergy Clin North Am, 2009, 29(4): 621-629. doi:10.1016/j.iac.2009.07.003.
[11] Li JY, Jiao J, Wang M, et al. Hypomethylation of the IL8 promoter in nasal epithelial cells of patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2019, 144(4): 993-1003.e12. doi:10.1016/j.jaci.2019.06.042.
[12] Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP[J]. Nat Immunol, 2002, 3(7): 673-680. doi:10.1038/ni805.
[13] Nagarkar DR, Poposki JA, Tan BK, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2013, 132(3): 593-600.e12. doi:10.1016/j.jaci.2013.04.005.
[14] Kimura S, Pawankar R, Mori S, et al. Increased expression and role of thymic stromal lymphopoietin in nasal polyposis[J]. Allergy Asthma Immunol Res, 2011, 3(3): 186-193. doi:10.4168/aair.2011.3.3.186.
[15] Li JY, Jiao J, Gao YB, et al. Association between methylation in nasal epithelial TSLP gene and chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol, 2019, 15(1): 71. doi:10.1186/s13223-019-0389-3.
[16] Heljasvaara R, Nyberg P, Luostarinen J, et al. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases[J]. Exp Cell Res, 2005, 307(2): 292-304. doi:10.1016/j.yexcr.2005.03.021.
[17] Ergün S, Kilic N, Wurmbach JH, et al. Endostatin inhibits angiogenesis by stabilization of newly formed endothelial tubes[J]. Angiogenesis, 2001, 4(3): 193-206. doi:10.1023/a: 1014027218980.
[18] Zhang Y, Qu ZH, Cui M, et al. Combined endostatin and TRAIL gene transfer suppresses human hepatocellular carcinoma growth and angiogenesis in nude mice[J]. Cancer Biol Ther, 2009, 8(5): 466-473. doi:10.4161/cbt.8.5.7687.
[19] Suzaki Y, Hamada K, Sho M, et al. A potent antiangiogenic factor, endostatin prevents the development of asthma in a murine model[J]. J Allergy Clin Immunol, 2005, 116(6): 1220-1227. doi:10.1016/j.jaci.2005.08.052.
[20] Kidoguchi M, Noguchi E, Nakamura T, et al. DNA methylation of proximal PLAT promoter in chronic rhinosinusitis with nasal polyps[J]. Am J Rhinol Allergy, 2018, 32(5): 374-379. doi:10.1177/1945892418782236.
[21] Takabayashi T, Kato A, Peters AT, et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression[J]. Am J Respir Crit Care Med, 2013, 187(1): 49-57. doi:10.1164/rccm.201207-1292OC.
[22] Kim DY, Cho SH, Takabayashi T, et al. Chronic rhinosinusitis and the coagulation system[J]. Allergy Asthma Immunol Res, 2015, 7(5): 421-430. doi:10.4168/aair.2015.7.5.421.
[23] Kim JY, Kim DK, Yu MS, et al. Role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2018, 17(1): 1219-1227. doi:10.3892/mmr.2017.8001.
[24] Velimir GM, Hrvoje C, Livije K, et al. Surgical treatment for nasal polyposis: predictors of outcome[J]. Eur Arch Oto Rhino Laryngol Off J Eur Fed Oto Rhino Laryngol Soc EUFOS Affil Ger Soc Oto Rhino Laryngol Head Neck Surg, 2015, 272(12): 3735-3743. doi:10.1007/s00405-015-3519-7.
[25] Sreeparvathi A, Kalyanikuttyamma LK, Kumar M, et al. Significance of blood eosinophil count in patients with chronic rhinosinusitis with nasal polyposis[J]. J Clin Diagn Res, 2017, 11(2): MC08-MC11. doi:10.7860/JCDR/2017/25320.9445.
[26] Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells[J]. Proc Natl Acad Sci USA, 2007, 104(23): 9685-9690. doi:10.1073/pnas.0702859104.
[27] Malbon CC. Frizzleds: new members of the superfamily of G-protein-coupled receptors[J]. Front Biosci, 2004, 9: 1048-1058. doi:10.2741/1308.
[28] Lin LZ, Cui L, Zhou WL, et al. Β-Catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis[J]. PNAS, 2007, 104(22): 9313-9318. doi:10.1073/pnas.0700923104.
[29] Kim JY, Cha MJ, Park YS, et al. Upregulation of FZD5 in eosinophilic chronic rhinosinusitis with nasal polyps by epigenetic modification[J]. Mol Cells, 2019, 42(4): 345-355. doi:10.14348/molcells.2019.2418.
[30] Benard A, Goossens-Beumer IJ, van Hoesel AQ, et al. Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer[J]. BMC Cancer, 2014, 14: 531. doi:10.1186/1471-2407-14-531.
[31] Snowden AW, Gregory PD, Case CC, et al. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo[J]. Curr Biol, 2002, 12(24): 2159-2166. doi:10.1016/s0960-9822(02)01391-x.
[32] Bartke T, Vermeulen M, Xhemalce B, et al. Nucleosome-interacting proteins regulated by DNA and histone methylation[J]. Cell, 2010, 143(3): 470-484. doi:10.1016/j.cell.2010.10.012.
[33] Fuks F. DNA methylation and histone modifications: teaming up to silence genes[J]. Curr Opin Genet Dev, 2005, 15(5): 490-495. doi:10.1016/j.gde.2005.08.002.
[34] Andrew J, Tony B, Kouzarides. Regulation of chromatin by histone modifications[J]. Cell Research, 2011, 21(3): 381-395.
[35] Lal G, Bromberg JS. Epigenetic mechanisms of regulation of Foxp3 expression[J]. Blood, 2009, 114(18): 3727-3735. doi:10.1182/blood-2009-05-219584.
[36] Thomas LR, Miyashita H, Cobb RM, et al. Functional analysis of histone methyltransferase g9a in B and T lymphocytes[J]. J Immunol, 2008, 181(1): 485-493. doi:10.4049/jimmunol.181.1.485.
[37] Han SY, Lu J, Zhang Y, et al. Recruitment of histone deacetylase 4 by transcription factors represses interleukin-5 transcription[J]. Biochem J, 2006, 400(3): 439-448. doi:10.1042/BJ20061085.
[38] Lee JH, Chung SW, Park IH, et al. Expression of extracellular matrix metalloproteinase inducer in nasal polyps[J]. Am J Rhinol Allergy, 2010, 24(6): 127-131. doi:10.2500/ajra.2010.24.3503.
[39] Cho JS, Moon YM, Park IH, et al. Epigenetic regulation of myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts[J]. Clin Exp Allergy, 2012, 42(6): 872-882. doi:10.1111/j.1365-2222.2011.03931.x.
[40] Cho JS, Moon YM, Park IH, et al. Effects of histone deacetylase inhibitor on extracellular matrix production in human nasal polyp organ cultures[J]. Am J Rhinol Allergy, 2013, 27(1): 18-23. doi:10.2500/ajra.2013.27.3827.
[41] Yang WW, Ernst P. SET/MLL family proteins in hematopoiesis and leukemia[J]. Int J Hematol, 2017, 105(1): 7-16. doi:10.1007/s12185-016-2118-8.
[42] Theocharisa S, Margeli A, Kouraklis G. Peroxisome proliferator activated receptor-gamma ligands as potent antineoplastic agents[J]. Curr Med Chem Anticancer Agents, 2003, 3(3): 239-251. doi:10.2174/1568011033482431.
[43] Wei JJ, Wu XY, Peng Y, et al. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion[J]. Clin Cancer Res, 2011, 17(6): 1297-1305. doi:10.1158/1078-0432.CCR-10-0993.
[44] Bartel DP. Metazoan microRNAs[J]. Cell, 2018, 173(1): 20-51. doi:10.1016/j.cell.2018.03.006.
[45] Turner ML, Schnorfeil FM, Brocker T. microRNAs regulate dendritic cell differentiation and function[J]. J Immunol, 2011, 187(8): 3911-3917. doi:10.4049/jimmunol.1101137.
[46] Luo X, Han MM, Liu JQ, et al. Epithelial cell-derived micro RNA-146a generates interleukin-10-producing monocytes to inhibit nasal allergy[J]. Sci Rep, 2015, 5: 15937. doi:10.1038/srep15937.
[47] Elbehidy RM, Youssef DM, El-Shal AS, et al. microRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children[J]. Mol Immunol, 2016, 71: 107-114. doi:10.1016/j.molimm.2015.12.015.
[48] Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2012, 185(2): 140-151. doi:10.1164/rccm.201103-0456OC.
[49] Xuan LJ, Luan G, Wang Y, et al. microRNAs regulating mucin type O-glycan biosynthesis and transforming growth factor β signaling pathways in nasal mucosa of patients with chronic rhinosinusitis with nasal polyps in Northern China[J]. Int Forum Allergy Rhinol, 2019, 9(1): 106-113. doi:10.1002/alr.22230.
[50] Luo XQ, Shao JB, Xie RD, et al. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis[J]. Oncotarget, 2017, 8(30): 48915-48921. doi:10.18632/oncotarget.16555.
[51] Qing X, Zhang YQ, Peng Y, et al. miR-142-3p regulates inflammatory response by contributing to increased TNF-α in chronic rhinosinusitis with nasal polyposis[J]. Ear Nose Throat J, 2021, 100(1): NP50-NP56. doi:10.1177/0145561319847972.
[52] Mitoma H, Horiuchi T, Tsukamoto H, et al. Molecular mechanisms of action of anti-TNF-α agents - Comparison among therapeutic TNF-α antagonists[J]. Cytokine, 2018, 101: 56-63. doi:10.1016/j.cyto.2016.08.014.
[53] Thorley AJ, Ford PA, Giembycz MA, et al. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages[J]. J Immunol, 2007, 178(1): 463-473. doi:10.4049/jimmunol.178.1.463.
[54] Ma ZX, Shen Y, Zeng Q, et al. miR-150-5p regulates EGR2 to promote the development of chronic rhinosinusitis via the DC-Th axis[J]. Int Immunopharmacol, 2018, 54: 188-197. doi:10.1016/j.intimp.2017.11.011.
[55] Doncel-Pérez E, Mateos-Hernández L, Pareja E, et al. Expression of early growth response gene-2 and regulated cytokines correlates with recovery from guillain-Barré syndrome[J]. J Immunol, 2016, 196(3): 1102-1107. doi:10.4049/jimmunol.1502100.
[56] Kim TD, Jung HR, Seo SH, et al. microRNA-150 modulates intracellular Ca2+ levels in naïve CD8+ T cells by targeting TMEM20[J]. Sci Rep, 2017, 7(1): 2623. doi:10.1038/s41598-017-02697-x.
[57] Yu HL, Ju JB, Liu JD, et al. Aberrant expression of miR-663 and transforming growth factor-β1 in nasal polyposis in children[J]. Exp Ther Med, 2018, 15(5): 4550-4556. doi:10.3892/etm.2018.5927.
[58] Park IH, Um JY, Hong SM, et al. Metformin reduces TGF-β1-induced extracellular matrix production in nasal polyp-derived fibroblasts[J]. Otolaryngol Head Neck Surg, 2014, 150(1): 148-153. doi:10.1177/0194599813513880.
[59] Luo Q, Zhang ZY, Liu D, et al. Human neutrophil elastase induces MUC5AC overexpression in chronic rhinosinusitis through tumour necrosis factor-α converting enzyme[J]. Acta Otolaryngol, 2016, 136(6): 641-648. doi:10.3109/00016489.2016.1144145.
[60] Wang J, Zhu MC, Wang LL, et al. Amphiregulin potentiates airway inflammation and mucus hypersecretion induced by urban particulate matter via the EGFR-PI3Kα-AKT/ERK pathway[J]. Cell Signal, 2019, 53: 122-131. doi:10.1016/j.cellsig.2018.10.002.
[61] Xu R, Li Q, Zhou J, et al. Secretoneurin induces airway mucus hypersecretion by enhancing the binding of EGF to NRP1[J]. Cell Physiol Biochem, 2014, 33(2): 446-456. doi:10.1159/000358625.
[62] Yan DQ, Ye Y, Zhang J, et al. Human neutrophil elastase induces MUC5AC overexpression in chronic rhinosinusitis through miR-146a[J]. Am J Rhinol Allergy, 2020, 34(1): 59-69. doi:10.1177/1945892419871798.
[63] Choksi SP, Lauter G, Swoboda P, et al. Switching on Cilia: transcriptional networks regulating ciliogenesis[J]. Development, 2014, 141(7): 1427-1441. doi:10.1242/dev.074666.
[64] Spassky N, Meunier A. The development and functions of multiciliated epithelia[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 423-436. doi:10.1038/nrm.2017.21.
[65] Callejas-Díaz B, Fernandez G, Fuentes M, et al. Integrated mRNA and microRNA transcriptome profiling during differentiation of human nasal polyp epithelium reveals an altered ciliogenesis[J]. Allergy, 2020, 75(10): 2548-2561. doi:10.1111/all.14307.
[66] Diesch J, Zwick A, Garz AK, et al. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers[J]. Clin Epigenetics, 2016, 8: 71. doi:10.1186/s13148-016-0237-y.
[67] Fenaux P, Mufti GJ, Hellström-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia[J]. J Clin Oncol, 2010, 28(4): 562-569. doi:10.1200/JCO.2009.23.8329.
[68] Yeo NK, Park WJ, Eom DW, et al. Effects of azathioprine and its metabolites on inflammatory cytokines in human nasal polyp organ cultures[J]. Int Forum Allergy Rhinol, 2019, 9(6): 648-655. doi:10.1002/alr.22303.
[69] Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases[J]. Chonnam Med J, 2016, 52(1): 1-11. doi:10.4068/cmj.2016.52.1.1.
[1] WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124.
[2] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[3] YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29.
[4] LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35.
[5] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[6] WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49.
[7] YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55.
[8] GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63.
[9] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[10] QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77.
[11] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[12] YU Longgang,JIANG Yan. Research progress on the correlation between nasal bacterial microbiome and chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 92-97.
[13] CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109.
[14] WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141.
[15] LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Bao-feng,DANG Guang-fu .

Trans-scleral suture fixation in implantation of foldable intraocular lenses

[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 376 -378 .
[2] FENG Xin-rong,ZHANG Hong-xia,XU Zhen-ji,QU Jun-jun, . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(3): 225 -226 .
[3] ZHANG Qiu-gui,HE Hai-yan . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 520 -521 .
[4] LI Hai-yan,ZHAO Qiu-liang,HAN Xiao-pan,YU li . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 527 -529 .
[5] SONG Xi-cheng,ZHANG hua,ZHANG Qing-quan . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 385 -387 .
[6] ZHAN Shan-qiang,KONG Fan-li,CAO Wen-juan,TANG Jie . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 559 -560 .
[7] ZHANG Hu,AI Qin . Re-operation for thyroid cancer[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(2): 166 -167 .
[8] HU Ming,LI Zhao-na,LI Yun-jie ,TAO Xiang-chen . Effect of rigid gas permeable contact lens on keratoconus[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(2): 171 -173 .
[9] LOU Feng . Effect of bilateral superior laryngeal nerve block on preventing cardiovascular reaction[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 173 -175 .
[10] CHEN Wei-Xiong, WANG Yue-Jian, CENG Yong, HE Fa-Yao, ZHANG Jian-Li, ZHENG Li-Gang, TANG Su-Cheng. Clinical experience of no-insufflation endoscopic thyroidectomy by a small incision upon the sternum[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(4): 24 -26 .