Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (3): 143-148.doi: 10.6040/j.issn.1673-3770.0.2022.254

• 综述 • Previous Articles    

Mechanism and clinical applications of subthreshold diode micropulse laser

TANG Huixin, LI Jingjing, ZOU Hong   

  1. Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
  • Published:2023-05-24

Abstract: The subthreshold diode micropulse laser(SDML)is a multiple repeated energy micropulse emitted by multiple thresholds within a short time. Currently, it can be used in retinal diseases, such as diabetic retinopathy, central serous chorioretinopathy, and retinal vein occlusion macular edema. The SDML can preserve the visual contrast sensitivity better than the traditional laser, reducing the risks of subretinal fibrosis and scar formation. The current research shows that it can selectively act on the retinal pigment epithelial, improve the function of Müller cells, inactivate microglia, reduce the expression of inflammatory factors such as the vascular endothelial growth factor, and up-regulate the expression of protective factors such as the pigment epithelium-derived factor to inhibit the formation of neovascularization and reduce macular edema to protect retinal function and preserve patients' vision. However, problems still exist in its clinical applications, such as the nonstandardization of the energy, time, density, and other parameters of SDML treatment and the unclear molecular mechanism. Therefore, further clinical trials and basic experimental studies are required. The purpose of this study is to review the molecular mechanism and current clinical applications of SDML to provide a reference for the clinical applications of SDML

Key words: Subthreshold diode micropulse laser, Molecular mechanism, Clinical application, Diabetic retinopathy, Central serous chorioretinopathy, Retinal vein occlusion

CLC Number: 

  • R774.1
[1] Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group[J]. Arch Ophthalmol, 1985, 103(12): 1796-1806.
[2] Schatz H, Madeira D, McDonald HR, et al. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema[J]. Arch Ophthalmol, 1991, 109(11): 1549-1551. doi:10.1001/archopht.1991.01080110085041
[3] Guyer DR, D'Amico DJ, Smith CW. Subretinal fibrosis after laser photocoagulation for diabetic macular edema[J]. Am J Ophthalmol, 1992, 113(6): 652-656. doi:10.1016/s0002-9394(14)74789-0
[4] Fong DS, Girach A, Boney A. Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review[J]. Retina, 2007, 27(7): 816-824. doi:10.1097/IAE.0b013e318042d32c
[5] Maturi RK, Glassman AR, Liu D, et al. Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR network phase 2 randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(1): 29-38. doi:10.1001/jamaophthalmol.2017.4914
[6] Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the European society of Retina specialists(EURETINA)[J]. Ophthalmologica, 2017, 237(4): 185-222. doi:10.1159/000458539
[7] Teja S, Sawatzky L, Wiens T, et al. Ozurdex for refractory macular edema secondary to diabetes, vein occlusion, uveitis and pseudophakia[J]. Can J Ophthalmol, 2019, 54(5): 540-547. doi:10.1016/j.jcjo.2018.12.005
[8] Roider J, Hillenkamp F, Flotte T, et al. Microphotocoagulation: selective effects of repetitive short laser pulses[J]. Proc Natl Acad Sci USA, 1993, 90(18): 8643-8647. doi:10.1073/pnas.90.18.8643
[9] Pankratov MM. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation[C] //OE/LASE '90. Proc SPIE 1202, Laser-Tissue Interaction, Los Angeles, CA, USA. 1990, 1202: 205-213. doi:10.1117/12.17626
[10] Stanga PE, Reck AC, Hamilton AMP. Micropulse laser in the treatment of diabetic macular edema[J]. Semin Ophthalmol, 1999, 14(4): 210-213. doi:10.3109/08820539909069539
[11] Scholz P, Altay L, Fauser S. A review of subthreshold micropulse laser for treatment of macular disorders[J]. Adv Ther, 2017, 34(7): 1528-1555. doi:10.1007/s12325-017-0559-y
[12] Li ZY, Song YP, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. doi:10.1007/s12013-015-0675-8
[13] 梁燕华. 阈值下810 nm微脉冲激光对糖尿病大鼠视网膜病变治疗机制的研究[D]. 广州: 南方医科大学, 2016.
[14] Uemura A, Fruttiger M, D’Amore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation[J]. Prog Retin Eye Res, 2021, 84: 100954. doi:10.1016/j.preteyeres.2021.100954
[15] Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells[J]. J Ophthalmol, 2015: 729792. doi:10.1155/2015/729792
[16] Piri N, Kwong JMK, Gu L, et al. Heat shock proteins in the Retina: focus on HSP70 and alpha crystallins in ganglion cell survival[J]. Prog Retin Eye Res, 2016, 52: 22-46. doi:10.1016/j.preteyeres.2016.03.001
[17] Hirabayashi K, Kakihara S, Tanaka M, et al. Investigation of the therapeutic mechanism of subthreshold micropulse laser irradiation in Retina[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(5): 1039-1047. doi:10.1007/s00417-020-04638-3
[18] Midena E, Bini S, Martini F, et al. Changes of aqueous humor müller cells' blomarkers in human patients affected by diabetic macular edema after subthreshold micropulse laser treatment. Retina[J]. 2020, 40(1): 126-134. doi: 10.1097/IAE.0000000000002356
[19] Li XY, Lv JJ, Li JZ, et al. Kir4.1 may represent a novel therapeutic target for diabetic retinopathy(Review)[J]. Exp Ther Med, 2021, 22(3): 1021. doi:10.3892/etm.2021.10453
[20] Li L, Eter N, Heiduschka P. The microglia in healthy and diseased Retina[J]. Exp Eye Res, 2015, 136: 116-130. doi:10.1016/j.exer.2015.04.020
[21] Grigsby JG, Cardona SM, Pouw CE, et al. The role of microglia in diabetic retinopathy[J]. J Ophthalmol, 2014(1): 705783. doi:10.1155/2014/705783
[22] Midena E, Micera A, Frizziero L, et al. Sub-threshold micropulse laser treatment reduces inflammatory biomarkers in aqueous humour of diabetic patients with macular edema[J]. Sci Rep, 2019, 9(1): 10034. doi:10.1038/s41598-019-46515-y
[23] Lavinsky D, Sramek C, Wang J, et al. Subvisible retinal laser therapy: titration algorithm and tissue response[J]. Retina, 2014, 34(1): 87-97. doi:10.1097/IAE.0b013e3182993edc
[24] Friberg TR, Karatza EC. The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser[J]. Ophthalmology, 1997, 104(12): 2030-2038. doi:10.1016/s0161-6420(97)30061-x
[25] Stanga PE, Reck AC, Hamilton AM. Micropulse laser in the treatment of diabetic macular edema[J]. Semin Ophthalmol, 1999, 14(4): 210-213. doi:10.3109/08820539909069539
[26] Chen GH, Tzekov R, Li WS, et al. Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials[J]. Retina, 2016, 36(11): 2059-2065. doi:10.1097/IAE.0000000000001053
[27] Qiao G, Guo HK, Dai Y, et al. Sub-threshold micro-pulse diode laser treatment in diabetic macular edema: a Meta-analysis of randomized controlled trials[J]. Int J Ophthalmol, 2016, 9(7): 1020-1027. doi:10.18240/ijo.2016.07.15
[28] Akhlaghi M, Dehghani A, Pourmohammadi R, et al. Effects of subthreshold diode micropulse laser photocoagulation on treating patients with refractory diabetic macular edema[J]. J Curr Ophthalmol, 2018, 31(2): 157-160. doi:10.1016/j.joco.2018.11.006
[29] Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema[J]. Eur J Ophthalmol, 2018, 28(1): 68-73. doi:10.5301/ejo.5001000
[30] van Rijssen TJ, van Dijk EHC, Yzer S, et al. Central serous chorioretinopathy: towards an evidence-based treatment guideline[J]. Prog Retin Eye Res, 2019, 73: 100770. doi:10.1016/j.preteyeres.2019.07.003
[31] Mohabati D, van Rijssen TJ, van Dijk EH, et al. Clinical characteristics and long-term visual outcome of severe phenotypes of chronic central serous chorioretinopathy[J]. Clin Ophthalmol, 2018, 12: 1061-1070. doi:10.2147/OPTH.S160956
[32] Otsuka S, Ohba N, Nakao K. A long-term follow-up study of severe variant of central serous chorioretinopathy[J]. Retina, 2002, 22(1): 25-32. doi:10.1097/00006982-200202000-00005
[33] Yannuzzi LA, Shakin JL, Fisher YL, et al. Peripheral retinal detachments and retinal pigment epithelial atrophic tracts secondary to central serous pigment epitheliopathy. 1984[J]. Retina, 2012, 32(1): 1554-1572. doi:10.1097/iae.0b013e3182434da4
[34] Malik KJ, Sampat KM, Mansouri A, et al. Low-intensity/high-density subthreshold microPulse diode laser for chronic central serous chorioretinopathy[J]. Retina, 2015, 35(3): 532-536. doi:10.1097/IAE.0000000000000285
[35] Luttrull JK. Low-intensity/high-density subthreshold diode micropulse laser for central serous chorioretinopathy[J]. Retina, 2016, 36(9): 1658-1663. doi:10.1097/IAE.0000000000001005
[36] Koss MJ, Beger I, Koch FH. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy[J]. Eye(Lond), 2012, 26(2): 307-314. doi:10.1038/eye.2011.282
[37] van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE trial[J]. Ophthalmology, 2018, 125(10): 1547-1555. doi:10.1016/j.ophtha.2018.04.021
[38] Arora S, Sridharan P, Arora T, et al. Subthreshold diode micropulse laser versus observation in acute central serous chorioretinopathy[J]. Clin Exp Optom, 2019, 102(1): 79-85. doi:10.1111/cxo.12818
[39] Parodi MB, Spasse S, Iacono P, et al. Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared(810 nanometer)diode laser[J]. Ophthalmology, 2006, 113(12): 2237-2242. doi:10.1016/j.ophtha.2006.05.056
[40] Parodi MB, Iacono P, Ravalico G. Intravitreal triamcinolone acetonide combined with subthreshold grid laser treatment for macular oedema in branch retinal vein occlusion: a pilot study[J]. Br J Ophthalmol, 2008, 92(8): 1046-1050. doi:10.1136/bjo.2007.128025
[41] Inagaki K, Ohkoshi K, Ohde S, et al. Subthreshold micropulse photocoagulation for persistent macular edema secondary to branch retinal vein occlusion including best-corrected visual acuity greater than 20/40[J]. J Ophthalmol, 2014, 2014: 251257. doi:10.1155/2014/251257
[42] 陈懿, 陈青山, 罗恒, 等. 微脉冲激光联合抗VEGF药物治疗BRVO继发的黄斑水肿[J]. 国际眼科杂志, 2017, 17(6): 1184-1187. doi:10.3980/j.issn.1672-5123.2017.6.48 CHEN Yi, CHEN Qingshan, LUO Heng, et al. Subthreshold micropulse laser photocoagulation with intravitreous anti-VEGF for macular edema secondary to branch retinal vein occlusion[J]. International Eye Science, 2017, 17(6): 1184-1187. doi:10.3980/j.issn.1672-5123.2017.6.48
[43] Kumar A, Kumar P, Ambiya V, et al. Subthreshold micropulse laser for adult onset Coats' associated exudative maculopathy[J]. Eur J Ophthalmol, 2022, 32(5): NP29-NP31. doi:10.1177/11206721211005691
[44] 陈彦茹, 李明翰, 黎晓新. 577 nm阈值下微脉冲激光治疗息肉样脉络膜血管病变临床疗效观察[J]. 航空航天医学杂志, 2020, 31(11): 1287-1290. doi: 10.3969/j.issn.2095-1434.2020.11.002 CHEN Yanru, LI Minghan, LI Xiaoxin. The clinical effect of 577 nm subthreshold micropulse laser on polypoidal choroidal vasculopathy[J]. Journal of Aerospace Medicine, 2020, 31(11): 1287-1290. doi: 10.3969/j.issn.2095-1434.2020.11.002
[45] 王仙, 李颖, 赵博军. 息肉样脉络膜血管病变诊疗进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 103-106. doi:10.6040/j.issn.1673-3770.0.2017.543 WANG Xian, LI Ying, ZHAO Bojun. Advances in diagnosis and treatment of polypoid choroidal vasculopathy[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(2): 103-106. doi:10.6040/j.issn.1673-3770.0.2017.543
[46] 钟雯, 喻晓兵, 戴虹. 全黄斑覆盖微脉冲激光治疗继发于Irvine-Gass综合征的难治性黄斑水肿疗效观察[J]. 中华眼底病杂志, 2021(8): 594-598. doi: 10.3760/cma.j.cn511434-20201027-00508 ZHONG Wen, YU Xiaobing, DAI Hong. Observation of the curative effect of full macular coverage micropulse laser in the treatment of refractory macular edema secondary to Irvine-Gass syndrome[J]. Chinese Journal of Ocular Fundus Diseases, 2021(8): 594-598. doi: 10.3760/cma.j.cn511434-20201027-00508
[1] ZHANG Huaxiu, LIU Qin, LUO Wugen, YANG Jian, CHEN Lingyun. Clinical effect of new neck brace receiver in external auditory canal irrigation [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 7-10.
[2] LI Lu, ZHAO Jie, ZHAO Bojun. Research progress on the pathogenesis and treatments of central serous chorioretinopathy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 118-124.
[3] LIU Tong, LIN Wei, FENG Meng, YANG Yi, LIU Tingting, ZHANG Min. Analysis of the effect of berberine on diabetic retinopathy in the immune microenvironment based on network pharmacology and experimental verification [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 94-104.
[4] GU Ranran, LI Fengjiao, JIAO Wanzhen, CUI Yanyan, ZHAO Bojun. Clinical efficacy of lecithin complex iodine capsule in the adjuvant treatment of retinal vein occlusion [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 46-50.
[5] WANG Jiaojiao, LI MiaoOverview,SONG ZongmingGuidance. Progress in diabetic retinopathy mechanisms and cellular models [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99.
[6] WANG Hui, WANG Jun, SUN Yi, YU Tengfei, ZHU Yuguang, ZHU Yan. Effect of intravitreal injection of HGF-MSCs on the expression of HGF in retina tissue of diabetic rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 72-77.
[7] HAI Yue,LIAO Xuan. Research progress and clinical application of Catquest-9SF [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 142-146.
[8] LIU Zhigao, WANG Shuya, HAN Xuguang, WANG Yu, LI Zhiwei, MA Aihua, ZHAO Bojun. Preoperative timing and the effect of intravitreal aflibercept injection for proliferative diabetic retinopathy patients [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 99-103.
[9] To describe characteristics and risk factors associated with central serous chorioretinopathy(CSC)in a hospital-based outpatient sample population. MethodsIn this hospital-based cross-sectional study, CSC patients were recruited from the Beijing Friendship Hospital from 01/2019 to 12/2019. All participants underwent a standardized interview. Logistic regression models were used to assess the risk factors associated with CSC. ResultsA total of 23,878 outpatients were recorded during the period 01/2019-12/2019. Of these, 45 patients(0.19%)were diagnosed with CSC, divided in 37 male patients(82.22%)and 8 female patients(17.78%). The patients′ age ranged from 21 to 65(42.3±10.1)years. Three patients(6.67%)presented a bilateral involvement. Of all the patients, 39 were included in the present analysis. Control patients were matched for age and sex at a ratio of 1:1. The presence of CSC was associated with exposure to steroids(OR=5.04, 95% CI:1.11-22.89), sleep time(going to sleep after 12 pm)(OR=4.16, 95% CI:1.33-13.04)),and shift-work(OR=5.74, 95% CI:1.47-22.45).ConclusionsOur data showed that CSC prevalence in the analyzed outpatients was 0.19%. Exposure to steroids, sleep time, and shift-work were factors related with CSC in the observed population.. Prevalence and risk factors of central serous chorioretinopathy in a hospital-based population YANG Xiufen, YOU Ran, MA Xiumei, WANG Kang, WANG Yanling Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, ChinaAbstract:Objective〓 [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 75-79.
[10] QING Xiaoyan,XU Yiquan,LI Chao. Advances in molecular mechanisms of anaplastic thyroid cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 26-31.
[11] Keyang HAN,Beibei YU,Bojun ZHAO. Morphological structure analysis of the macular area after anti-VEGF treatment for short-term retinal vein occlusion [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 129-131.
[12] Yupeng SHEN,Qi SONG,Xiaoming LI. Etiology, molecular mechanisms, and treatment strategies of precancerous laryngeal lesions [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 25-30.
[13] Zhiwen CHEN,Lei CHENG. Detection and clinical application of nasal nitric oxide [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 124-128.
[14] LIU Jianbo, ZHANG Huan. Phacoemulsification combined with intravitreal ranibizumab or triamcinolone acetonide injection for the treatment of cataract accompanied by diabetic macular edema [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 99-104.
[15] LI Baohua, LIU Ping, WANG Xin. Effect of beta elemene on the expression of IL-1 beta and ICAM-1 in the retina of diabetic rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 111-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!