Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (4): 172-180.doi: 10.6040/j.issn.1673-3770.0.2022.090

Previous Articles    

Research progress of pyroptosis in senile degenerative diseases

ZHOU Jiamin, SONG Yuwan, SUN Yan   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University/Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai 264000, Shandong, China
  • Published:2023-07-27

Abstract: Pyroptosis is a process that mainly induces the activation of the inflammatory cysteine-aspartate-specific protease family through the inflammasome and subsequently cleaves the gasdermin family of pyroptotic proteins. This eventually leads to the rupture of cell membranes and release of cell contents, causing an intense novel programmed cell death mode of inflammatory responses. Currently reported pyroptosis pathways mainly include the caspase-1-dependent classical, caspase-11-dependent non-classical, caspase-3-dependent gasdermin E, and caspase-8-dependent gasdermin D pyroptosis pathways. In these multiple pyroptotic signaling pathways, the inflammasome and pyroptotic protein, gasdermins, play important roles as pioneers and executors. In recent years, with the advent of the aging era, research on pyroptosis in senile degenerative diseases has attracted attention. This article mainly reviews the main mechanism of pyroptosis and its research progress in senile degenerative diseases such as presbycusis, age-related macular degeneration, and Alzheimer's disease.

Key words: Pyroptosis, Inflammasome, Gasdermin family, Presbycusis, Age-related macular degeneration, Alzheimer's disease

CLC Number: 

  • R764.43+6
[1] Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. doi:10.1016/j.tibs.2016.10.004
[2] Cookson BT, Brennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3): 113-114. doi:10.1016/s0966-842x(00)01936-3
[3] Yu J, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells[J]. Cell Death Dis, 2019, 10(3): 193. doi:10.1038/s41419-019-1441-4
[4] Ding B, Ma G, Wang Z, et al. Mechanisms of kidney cell pyroptosis in chronic kidney disease and the effects of traditional Chinese medicine[J]. Evid Based Complement Alternat Med, 2021: 1173324. doi:10.1155/2021/1173324
[5] 朱晔, 朱伟平, 李巍, 等. 表氧化二十碳三烯酸对小鼠肾缺血再灌注损伤NLRP3炎症小体表达及细胞焦亡的影响[J]. 中华医学杂志, 2020, 100(10): 779-784. doi:10.3760/cma.j.cn112137-20200202-00178 ZHU Ye, ZHU Weiping, LI Wei, et al. Implications of EET in renal ischemia/reperfusion by regulating NLRP3 expression and pyroptosis[J]. National Medical Journal of China, 2020, 100(10): 779-784. doi:10.3760/cma.j.cn112137-20200202-00178
[6] Che H, Li H, Li Y, et al. Melatonin exerts neuroprotective effects by inhibiting neuronal pyroptosis and autophagy in STZ-induced diabetic mice[J]. FASEB J, 2020, 34(10): 14042-14054. doi:10.1096/fj.202001328R
[7] Xu YJ, Zheng L, Hu YW, et al. Pyroptosis and its relationship to atherosclerosis[J]. Clin Chim Acta, 2018, 476: 28-37. doi:10.1016/j.cca.2017.11.005
[8] Ekabe CJ, Clinton NA, Kehbila J, et al. The role of inflammasome activation in early HIV infection[J]. J Immunol Res, 2021: 1487287. doi: 10.1155/2021/1487287
[9] 覃高升, 李佳乐, 王婉婉, 等. 细胞焦亡在肿瘤中的研究进展[J]. 癌症进展, 2020, 18(4): 339-342, 355. doi:10.11877/j.issn.1672-1535.2020.18.04.04
[10] Abu Khweek A, Amer AO. Pyroptotic and non-pyroptotic effector functions of caspase-11[J]. Immunol Rev, 2020, 297(1): 39-52. doi:10.1111/imr.12910
[11] 殷婷婷, 张春泽, 张伟华. 药物通过gasdermin家族蛋白介导的细胞焦亡途径与抗肿瘤治疗研究进展[J]. 中国肿瘤生物治疗杂志, 2020, 27(5): 582-588. doi:10.3872/j.issn.1007-385x.2020.05.018 YIN Tingting, ZHANG Chunze, ZHANG Weihua. Research progress on drug-mediated pyroptosis pathway through gasdermin family proteins and its anti-tumor therapy[J]. Chinese Journal of Cancer Biotherapy, 2020(5): 582-588. doi:10.3872/j.issn.1007-385x.2020.05.018
[12] Amarante-Mendes GP, Adjemian S, Branco LM, et al. Pattern recognition receptors and the host cell death molecular machinery[J]. Front Immunol, 2018, 9: 2379. doi:10.3389/fimmu.2018.02379
[13] Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk[J]. Cell Death Differ, 2019, 26(1): 99-114. doi:10.1038/s41418-018-0212-6
[14] Xue Y, Enosi Tuipulotu D, Tan WH, et al. Emerging activators and regulators of inflammasomes and pyroptosis[J]. Trends Immunol, 2019, 40(11): 1035-1052. doi:10.1016/j.it.2019.09.005
[15] Ding B, Ma G, Wang Z, et al. Mechanisms of kidney cell pyroptosis in chronic kidney disease and the effects of traditional Chinese medicine[J]. Evid Based Complement Alternat Med, 2021: 1173324. doi: 10.1155/2021/1173324
[16] 姜华, 闫宜青, 江维, 等. NLRP3炎症小体活化、调控机制及相关疾病机制[J]. 中国科学(生命科学), 2017, 47(1): 125-131. doi: 10.1360/N052016-00360 JIANG Hua, Yan Yiqing, Jiang Wei, et al. NLRP3 inflammasome: activation, regulation, and role in diseases[J]. Scientia Sinica(Vitae), 2017, 47(1): 125-131. doi: 10.1360/N052016-00360
[17] Duncan JA, Canna SW. The NLRC4 inflammasome[J]. Immunol Rev, 2018, 281(1): 115-123. doi:10.1111/imr.12607
[18] Kay C, Wang R, Kirkby M, et al. Molecular mechanisms activating the NAIP-NLRC4 inflammasome: implications in infectious disease, autoinflammation, and cancer[J]. Immunol Rev, 2020, 297(1): 67-82. doi:10.1111/imr.12906
[19] Kumari P, Russo AJ, Shivcharan S, et al. AIM2 in health and disease: inflammasome and beyond[J]. Immunol Rev, 2020, 297(1): 83-95. doi:10.1111/imr.12903
[20] Heilig R, Broz P. Function and mechanism of the pyrin inflammasome[J]. Eur J Immunol, 2018, 48(2): 230-238. doi: 10.1002/eji.201746947
[21] Schnappauf O, Chae JJ, Kastner DL, et al. The pyrin inflammasome in health and disease[J]. Front Immunol, 2019, 10: 1745. doi:10.3389/fimmu.2019.01745
[22] Shen C, Lu A, Xie WJ, et al. Molecular mechanism for NLRP6 inflammasome assembly and activation[J]. PNAS, 2019, 116(6): 2052-2057. doi:10.1073/pnas.1817221116
[23] Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human disease[J]. Immunology, 2021, 163(4): 363-376. doi:10.1111/imm.13372
[24] 殷康力, 赵波, 张大伟. 细胞焦亡调控与炎症和肿瘤病理机制的关系[J]. 现代免疫学, 2022, 42(2): 155-164. YIN Kangli, ZHAO Bo, ZHANG Dawei. Pyroptosis regulation in inflammatory and tumor pathogenesis[J]. Current Immunology, 2022, 42(2): 155-164.
[25] Chen H, Deng Y, Gan X, et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma[J]. Mol Neurodegener, 2020, 15(1): 26. doi:10.1186/s13024-020-00372-w
[26] Song Y, Wu X, Xu Y, et al. HPV E7 inhibits cell pyroptosis by promoting TRIM21-mediated degradation and ubiquitination of the IFI16 inflammasome[J]. Int J Biol Sci, 2020, 16(15): 2924-2937. doi:10.7150/ijbs.50074
[27] Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20(3): 143-157. doi:10.1038/s41577-019-0228-2
[28] Rogers C, Alnemri ES. Gasdermins in apoptosis: new players in an old game[J]. Yale J Biol Med, 2019, 92(4): 603-617.
[29] Rogers C, Alnemri ES. Gasdermins: novel mitochondrial pore-forming proteins[J]. Mol Cell Oncol, 2019, 6(5): e1621501. doi:10.1080/23723556.2019.1621501
[30] 董娜, 邵峰. 细胞焦亡的机制和功能[J]. 中国科学(生命科学), 2019, 49(12): 1606-1634. doi:10.1360/SSV-2019-0242 DONG Na, SHAO Feng. Molecular mechanism and immunological function of pyroptosis[J]. Scientia Sinica(Vitae), 2019, 49(12): 1606-1634. doi:10.1360/SSV-2019-0242
[31] Zhang Y, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths[J]. Cell Res, 2018, 28(1): 9-21. doi:10.1038/cr.2017.133
[32] Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer[J]. Biomed Pharmacother, 2020, 121: 109595. doi:10.1016/j.biopha.2019.109595
[33] 刘岳衡, 王慧. 细胞焦亡:程序性死亡研究新热点[J]. 临床与病理杂志, 2016, 36(7): 1006-1011. doi:10.3978/j.issn.2095-6959.2016.07.022 LIU Yueheng, Wang Hui. Pyroptosis: a new hotspot in the programmed cell death[J]. Journal of Clinical and Pathological Research, 2016, 36(7): 1006-1011. doi:10.3978/j.issn.2095-6959.2016.07.022
[34] Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017, 277(1): 61-75. doi:10.1111/imr.12534
[35] Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in Sepsis[J]. Immunity, 2018, 49(4): 740-753.e7. doi:10.1016/j.immuni.2018.08.016
[36] Liu L, Sun B. Neutrophil pyroptosis: new perspectives on sepsis[J]. Cell Mol Life Sci, 2019, 76(11): 2031-2042. doi:10.1007/s00018-019-03060-1
[37] Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death[J]. Science, 2018, 362(6418): 1064-1069. doi:10.1126/science.aau2818
[38] Zhang X, Zhang H. Chemotherapy drugs induce pyroptosis through caspase-3-dependent cleavage of GSDME[J]. Sci China Life Sci, 2018, 61(6): 739-740. doi:10.1007/s11427-017-9158-x
[39] Bowl MR, Dawson SJ. Age-related hearing loss[J]. Cold Spring Harb Perspect Med, 2019, 9(8): a033217. doi:10.1101/cshperspect.a033217
[40] 吉琳, 申琪, 赵立东. 老年性耳聋的治疗进展[J]. 中华耳科学杂志, 2021, 19(4): 662-665. doi:10.3969/j.issn.1672-2922.2021.04.023 JI Lin, SHEN Qi, ZHAO Lidong. Progress in treatment of presbycusis[J]. Chinese Journal of Otology, 2021, 19(4): 662-665. doi:10.3969/j.issn.1672-2922.2021.04.023
[41] Wang J, Puel JL. Presbycusis: an update on cochlear mechanisms and therapies[J]. J Clin Med, 2020, 9(1): 218. doi:10.3390/jcm9010218
[42] Kawashima T, Harai K, Fujita N, et al. Ninjinyoeito has a protective effect on the auditory nerve and suppresses the progression of age-related hearing loss in mice[J]. Front Nutr, 2020, 7: 528864. doi:10.3389/fnut.2020.528864
[43] Nakanishi H, Prakash P, Ito T, et al. Genetic hearing loss associated with autoinflammation[J]. Front Neurol, 2020, 11: 141. doi:10.3389/fneur.2020.00141
[44] 王健艳, 谭静芊, 杨洛盈, 等. 老年性聋部分致病机制和干预的研究进展[J]. 中华耳科学杂志, 2021, 19(1): 151-156. doi:10.3969/j.issn.1672-2922.2021.01.027 WANG Jianyan, TAN Jingqian, YANG Luoying, et al. Advances in research on pathogenic mechanisms and interventions of presbycusis[J]. Chinese Journal of Otology, 2021, 19(1): 151-156. doi:10.3969/j.issn.1672-2922.2021.01.027
[45] Keithley EM. Pathology and mechanisms of cochlear aging[J]. J Neurosci Res, 2020, 98(9): 1674-1684. doi:10.1002/jnr.24439
[46] Lyu AR, Kim TH, Park SJ, et al. Mitochondrial damage and necroptosis in aging cochlea[J]. Int J Mol Sci, 2020, 21(7): E2505. doi:10.3390/ijms21072505
[47] Marín-Aguilar F, Ruiz-Cabello J, Cordero MD. Aging and the inflammasomes[J]. Exp Suppl, 2018, 108: 303-320. doi:10.1007/978-3-319-89390-7_13
[48] Watson N, Ding B, Zhu X, et al. Chronic inflammation- inflammaging- in the ageing cochlea: a novel target for future presbycusis therapy[J]. Ageing Res Rev, 2017, 40: 142-148. doi:10.1016/j.arr.2017.10.002
[49] Van Laer L, Huizing EH, Verstreken M, et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5[J]. Nat Genet, 1998, 20(2): 194-197. doi:10.1038/2503
[50] 陈嘉伟.耳聋基因DFNA5截短突变致细胞毒性的研究[D]. 西安:中国人民解放军空军军医大学, 2019
[51] 李浩楠.一个新的DFNA5剪接位点突变及其功能研究[D]. 长春:吉林大学, 2018
[52] Op de Beeck K, Van Camp G, Thys S, et al. The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein[J]. Eur J Hum Genet, 2011, 19(9): 965-973. doi:10.1038/ejhg.2011.63
[53] Booth KT, Azaiez H, Kahrizi K, et al. Exonic mutations and exon skipping: lessons learned from DFNA5[J]. Hum Mutat, 2018, 39(3): 433-440. doi:10.1002/humu.23384
[54] Liu X, Xia S, Zhang Z, et al. Channelling inflammation: gasdermins in physiology and disease[J]. Nat Rev Drug Discov, 2021, 20(5): 384-405. doi:10.1038/s41573-021-00154-z
[55] 孔艳慧. DFNA5生物学功能和致聋机制初探[D]. 济南:山东大学, 2013
[56] Hu L, Chen M, Chen X, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate[J]. Cell Death Dis, 2020, 11(4): 281. doi:10.1038/s41419-020-2476-2
[57] Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. doi:10.1038/nature22393
[58] Wang J, Ye T, Wang S, et al. Molecular mechanisms and therapeutic relevance of gasdermin E in human diseases[J]. Cell Signal, 2022, 90: 110189. doi:10.1016/j.cellsig.2021.110189
[59] Wang H, Guan J, Guan L, et al. Further evidence for “gain-of-function” mechanism of DFNA5 related hearing loss[J]. Sci Rep, 2018, 8(1): 8424. doi:10.1038/s41598-018-26554-7
[60] 王翔, 刘强和. 老年性耳聋分子机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2013(3): 79-82. doi:10.6040/j.issn.1673-3770.0.2012.323 WANG Xiang, LIU Qianghe. Progress of molecular mechanisms of presbycusis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2013(3): 79-82. doi:10.6040/j.issn.1673-3770.0.2012.323
[61] 于慧柠, 郑体花, 郑庆印. 氧化应激在年龄相关性耳聋中的作用研究进展[J]. 中华耳科学杂志, 2019(5): 777-782. doi:10.3969/j.issn.1672-2922.2019.05.031 YU Huining, ZHENG Tihua, ZHENG Qingyin. Oxidative stress and age-related hearing loss[J]. Chinese Journal of Otology, 2019(5): 777-782. doi:10.3969/j.issn.1672-2922.2019.05.031
[62] Shi X, Qiu S, Zhuang W, et al. NLRP3-inflammasomes are triggered by age-related hearing loss in the inner ear of mice[J]. Am J Transl Res, 2017, 9(12): 5611-5618.
[63] 张敏, 李志坚, 王亚敏. 细胞焦亡在眼部疾病中的研究进展[J]. 眼科新进展, 2019, 39(1): 82-85
[64] Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. doi:10.1016/s0140-6736(18)31550-2
[65] Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration[J]. Nat Rev Dis Primers, 2021, 7(1): 31. doi:10.1038/s41572-021-00265-2
[66] Yang M, So KF, Lam WC, et al. Novel programmed cell death as therapeutic targets in age-related macular degeneration? [J]. Int J Mol Sci, 2020, 21(19): E7279. doi:10.3390/ijms21197279
[67] Zhang Y, Jiao Y, Li X, et al. Pyroptosis: a new insight into eye disease therapy[J]. Front Pharmacol, 2021, 12: 797110. doi:10.3389/fphar.2021.797110
[68] Ardeljan CP, Ardeljan D, Abu-Asab M, et al. Inflammation and cell death in age-related macular degeneration: an immunopathological and ultrastructural model[J]. J Clin Med, 2014, 3(4): 1542-1560. doi:10.3390/jcm3041542
[69] Yang M, So KF, Lo ACY, et al. The effect of Lycium barbarum polysaccharides on pyroptosis-associated amyloid β1-40 oligomers-induced adult retinal pigment epithelium 19 cell damage[J]. Int J Mol Sci, 2020, 21(13): E4658. doi:10.3390/ijms21134658
[70] Zhao M, Li S, Matsubara JA. Targeting pyroptotic cell death pathways in retinal disease[J]. Front Med(Lausanne), 2021, 8: 802063. doi:10.3389/fmed.2021.802063
[71] Tseng WA, Thein T, Kinnunen K, et al. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 110-120. doi:10.1167/iovs.12-10655
[72] Sun HJ, Jin XM, Xu J, et al. Baicalin alleviates age-related macular degeneration via miR-223/NLRP3-regulated pyroptosis[J]. Pharmacology, 2020, 105(1-2):28-38. doi:10.1159/000502614
[73] Huang P, Liu W, Chen J, et al. TRIM31 inhibits NLRP3 inflammasome and pyroptosis of retinal pigment epithelial cells through ubiquitination of NLRP3[J]. Cell Biol Int, 2020, 44(11): 2213-2219. doi:10.1002/cbin.11429
[74] 蔡雅文, 柴玉慧, 缪明星, 等. 细胞焦亡介导的阿尔兹海默症发病机制研究进展 [J]. 中国药学杂志, 2021, 56(21): 1701-1705. doi:10.11669/cpj.2021.21.001 CAI Yawen, CHAI Yuhui, MIAO Mingxing, et al. Research Progress of Pyroptosis-Mediated Pathogenesis of Alzheimer's Disease[J]. Chinese Pharmaceutical Journal, 2021, 56(21): 1701-1705. doi:10.11669/cpj.2021.21.001
[75] Onyango IG, Jauregui GV, Carná M, et al. Neuroinflammation in Alzheimer's disease[J]. Biomedicines, 2021, 9(5): 524. doi:10.3390/biomedicines9050524
[76] 张双双, 周石, 王瑞元, 等. 线粒体相关内质网膜影响阿尔茨海默病与帕金森病的研究进展[J]. 中华老年医学杂志, 2021, 40(2): 250-254. doi:10.3760/cma.j.issn.0254-9026.2021.02.025 ZHANG Shuangshuang, ZHOU Shi, WANG Ruiyuan, et al. Research advances in effects of mitochondria-associated endoplasmic reticulum membranes on Alzheimer's disease and Parkinson's disease[J]. Chinese Journal of Geriatrics, 2021(2):250-254. doi:10.3760/cma.j.issn.0254-9026.2021.02.025
[77] 刘春艳, 滑蓉蓉, 邢岩. 载脂蛋白E与阿尔茨海默病的关系[J]. 中华老年医学杂志, 2021, 40(4): 424-427. doi:10.3760/cma.j.issn.0254-9026.2021.04.004 LIU Chunyan, HUA Rongrong, XING Yan. Correlation between apolipoprotein E and Alzheimer's disease[J]. Chinese Journal of Geriatrics, 2021(4):424-427. doi:10.3760/cma.j.issn.0254-9026.2021.04.004
[78] Feng YS, Tan ZX, Wu LY, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease[J]. Ageing Res Rev, 2020, 64: 101192. doi:10.1016/j.arr.2020.101192
[79] Shen H, Han C, Yang Y, et al. Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimer's disease[J]. Brain Behav, 2021, 11(4): e02063. doi:10.1002/brb3.2063
[80] Han C, Yang Y, Guan Q, et al. New mechanism of nerve injury in Alzheimer's disease: β-amyloid-induced neuronal pyroptosis[J]. J Cell Mol Med, 2020, 24(14): 8078-8090. doi:10.1111/jcmm.15439
[81] Tan MS, Tan L, Jiang T, et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease[J]. Cell Death Dis, 2014, 5: e1382. doi:10.1038/cddis.2014.348
[82] Yap JKY, Pickard BS, Chan EWL, et al. The role of neuronal NLRP1 inflammasome in Alzheimer's disease: bringing neurons into the neuroinflammation game[J]. Mol Neurobiol, 2019, 56(11): 7741-7753. doi:10.1007/s12035-019-1638-7
[83] Choubey D. Type I interferon(IFN)-inducible Absent in Melanoma 2 proteins in neuroinflammation: implications for Alzheimer's disease[J]. J Neuroinflammation, 2019, 16(1): 236. doi:10.1186/s12974-019-1639-5
[84] Li J, Zhuang L, Luo X, et al. Protection of MCC950 against Alzheimer's disease via inhibiting neuronal pyroptosis in SAMP8 mice[J]. Exp Brain Res, 2020, 238(11): 2603-2614. doi:10.1007/s00221-020-05916-6
[85] Han C, Hu Q, Yu A, et al. Mafenide derivatives inhibit neuroinflammation in Alzheimer's disease by regulating pyroptosis[J]. J Cell Mol Med, 2021, 25(22): 10534-10542. doi:10.1111/jcmm.16984
[86] 金鑫. 细胞焦亡与眼病[J]. 中华实验眼科杂志, 2017, 35(12): 1130-1133. doi:10.3760/cma.j.issn.2095-0160.2017.12.015 JIN Xin. Pyroptosis and eye disease[J]. Chinese Journal of Experimental Ophthalmology, 2017, 35(12): 1130-1133. doi:10.3760/cma.j.issn.2095-0160.2017.12.015
[87] Zhang X, Zhang Y, Li R, et al. Salidroside ameliorates Parkinson's disease by inhibiting NLRP3-dependent pyroptosis[J]. Aging(Albany NY), 2020, 12(10):9405-9426. doi: 10.18632/aging.103215
[88] 张皓博, 赵宇楠, 杨学军. 细胞焦亡在椎间盘退变中的作用及治疗意义[J]. 中国组织工程研究, 2022, 26(9): 1445-1451 ZHANG Haobo, ZHAO Yunan, YANG Xuejun. Role and therapeutic implications of pyroptosis in intervertebral disc degeneration[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1445-1451
[1] YANG Yingling, GOU Haocheng, FENG Jun. Review of pyroptosis molecular mechanism and applications in head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 160-165.
[2] YUAN Yue, FU Shengyao, JIANG Yan, CHEN Min. Research progress of pyroptosis in chronic airway inflammatory disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 166-171.
[3] XU Enpei, SUN Xianyong. Diagnosis and treatment of exudative age-related macular degeneration combined with retinal pigment epithelial detachment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 125-142.
[4] WANG Luping, KOU Fangning, WANG Hao, ZHANG Canwei, WANG Yanling, YOU Ran, WU Weizhen. Effects of subretinal hyperreflective material on the visual prognosis of anti-VEGF therapy in patients with neovascular macular degeneration [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(6): 101-105.
[5] LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129.
[6] LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146.
[7] JI Shuaifei, ZHANG Jie, YAN Hong. Selection of intraocular lens for patients with age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 36-39.
[8] WANG Cui, YAN Xin, ZHAO Bojun. Combination of intravitreal ranibizumab with photodynamic therapy in the treatment of wet age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 94-97.
[9] ZHAO Lu, XIE Guoli, WANG Yanling. Changes of ocular hemodynamics after intravitreal ranibizumab injection in patients with wet age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(4): 101-104.
[10] DU Zhihong, YU Yafeng.. Effect of NLRP3 inflammasome in the pathogenesis and relapse of eosinophilic nasal polyps. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(1): 31-35.
[11] CHEN Chunli, SONG Zongming, JIA Xinguo, ZHOU Zhonglou, WANG Zhaoyang. Erythropoietin inhibits Müller cell apoptosis induced by oxidative damage [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(3): 65-71.
[12] ZHANG Ai-hui1, ZHU Ling1, ZHANG Jin-zhi1, ZHANG Wei2. Correlation between cataract phacoemulsification with intraocular lens implantation and age-related macular degeneration [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(5): 77-83.
[13] SHAO Yan1, XU Xin-rong2. Advances in study of traditional Chinese medicine on age-related macular degeneration [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(5): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!