Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (4): 172-180.doi: 10.6040/j.issn.1673-3770.0.2022.090
ZHOU Jiamin, SONG Yuwan, SUN Yan
CLC Number:
[1] Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. doi:10.1016/j.tibs.2016.10.004 [2] Cookson BT, Brennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3): 113-114. doi:10.1016/s0966-842x(00)01936-3 [3] Yu J, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells[J]. Cell Death Dis, 2019, 10(3): 193. doi:10.1038/s41419-019-1441-4 [4] Ding B, Ma G, Wang Z, et al. Mechanisms of kidney cell pyroptosis in chronic kidney disease and the effects of traditional Chinese medicine[J]. Evid Based Complement Alternat Med, 2021: 1173324. doi:10.1155/2021/1173324 [5] 朱晔, 朱伟平, 李巍, 等. 表氧化二十碳三烯酸对小鼠肾缺血再灌注损伤NLRP3炎症小体表达及细胞焦亡的影响[J]. 中华医学杂志, 2020, 100(10): 779-784. doi:10.3760/cma.j.cn112137-20200202-00178 ZHU Ye, ZHU Weiping, LI Wei, et al. Implications of EET in renal ischemia/reperfusion by regulating NLRP3 expression and pyroptosis[J]. National Medical Journal of China, 2020, 100(10): 779-784. doi:10.3760/cma.j.cn112137-20200202-00178 [6] Che H, Li H, Li Y, et al. Melatonin exerts neuroprotective effects by inhibiting neuronal pyroptosis and autophagy in STZ-induced diabetic mice[J]. FASEB J, 2020, 34(10): 14042-14054. doi:10.1096/fj.202001328R [7] Xu YJ, Zheng L, Hu YW, et al. Pyroptosis and its relationship to atherosclerosis[J]. Clin Chim Acta, 2018, 476: 28-37. doi:10.1016/j.cca.2017.11.005 [8] Ekabe CJ, Clinton NA, Kehbila J, et al. The role of inflammasome activation in early HIV infection[J]. J Immunol Res, 2021: 1487287. doi: 10.1155/2021/1487287 [9] 覃高升, 李佳乐, 王婉婉, 等. 细胞焦亡在肿瘤中的研究进展[J]. 癌症进展, 2020, 18(4): 339-342, 355. doi:10.11877/j.issn.1672-1535.2020.18.04.04 [10] Abu Khweek A, Amer AO. Pyroptotic and non-pyroptotic effector functions of caspase-11[J]. Immunol Rev, 2020, 297(1): 39-52. doi:10.1111/imr.12910 [11] 殷婷婷, 张春泽, 张伟华. 药物通过gasdermin家族蛋白介导的细胞焦亡途径与抗肿瘤治疗研究进展[J]. 中国肿瘤生物治疗杂志, 2020, 27(5): 582-588. doi:10.3872/j.issn.1007-385x.2020.05.018 YIN Tingting, ZHANG Chunze, ZHANG Weihua. Research progress on drug-mediated pyroptosis pathway through gasdermin family proteins and its anti-tumor therapy[J]. Chinese Journal of Cancer Biotherapy, 2020(5): 582-588. doi:10.3872/j.issn.1007-385x.2020.05.018 [12] Amarante-Mendes GP, Adjemian S, Branco LM, et al. Pattern recognition receptors and the host cell death molecular machinery[J]. Front Immunol, 2018, 9: 2379. doi:10.3389/fimmu.2018.02379 [13] Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk[J]. Cell Death Differ, 2019, 26(1): 99-114. doi:10.1038/s41418-018-0212-6 [14] Xue Y, Enosi Tuipulotu D, Tan WH, et al. Emerging activators and regulators of inflammasomes and pyroptosis[J]. Trends Immunol, 2019, 40(11): 1035-1052. doi:10.1016/j.it.2019.09.005 [15] Ding B, Ma G, Wang Z, et al. Mechanisms of kidney cell pyroptosis in chronic kidney disease and the effects of traditional Chinese medicine[J]. Evid Based Complement Alternat Med, 2021: 1173324. doi: 10.1155/2021/1173324 [16] 姜华, 闫宜青, 江维, 等. NLRP3炎症小体活化、调控机制及相关疾病机制[J]. 中国科学(生命科学), 2017, 47(1): 125-131. doi: 10.1360/N052016-00360 JIANG Hua, Yan Yiqing, Jiang Wei, et al. NLRP3 inflammasome: activation, regulation, and role in diseases[J]. Scientia Sinica(Vitae), 2017, 47(1): 125-131. doi: 10.1360/N052016-00360 [17] Duncan JA, Canna SW. The NLRC4 inflammasome[J]. Immunol Rev, 2018, 281(1): 115-123. doi:10.1111/imr.12607 [18] Kay C, Wang R, Kirkby M, et al. Molecular mechanisms activating the NAIP-NLRC4 inflammasome: implications in infectious disease, autoinflammation, and cancer[J]. Immunol Rev, 2020, 297(1): 67-82. doi:10.1111/imr.12906 [19] Kumari P, Russo AJ, Shivcharan S, et al. AIM2 in health and disease: inflammasome and beyond[J]. Immunol Rev, 2020, 297(1): 83-95. doi:10.1111/imr.12903 [20] Heilig R, Broz P. Function and mechanism of the pyrin inflammasome[J]. Eur J Immunol, 2018, 48(2): 230-238. doi: 10.1002/eji.201746947 [21] Schnappauf O, Chae JJ, Kastner DL, et al. The pyrin inflammasome in health and disease[J]. Front Immunol, 2019, 10: 1745. doi:10.3389/fimmu.2019.01745 [22] Shen C, Lu A, Xie WJ, et al. Molecular mechanism for NLRP6 inflammasome assembly and activation[J]. PNAS, 2019, 116(6): 2052-2057. doi:10.1073/pnas.1817221116 [23] Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human disease[J]. Immunology, 2021, 163(4): 363-376. doi:10.1111/imm.13372 [24] 殷康力, 赵波, 张大伟. 细胞焦亡调控与炎症和肿瘤病理机制的关系[J]. 现代免疫学, 2022, 42(2): 155-164. YIN Kangli, ZHAO Bo, ZHANG Dawei. Pyroptosis regulation in inflammatory and tumor pathogenesis[J]. Current Immunology, 2022, 42(2): 155-164. [25] Chen H, Deng Y, Gan X, et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma[J]. Mol Neurodegener, 2020, 15(1): 26. doi:10.1186/s13024-020-00372-w [26] Song Y, Wu X, Xu Y, et al. HPV E7 inhibits cell pyroptosis by promoting TRIM21-mediated degradation and ubiquitination of the IFI16 inflammasome[J]. Int J Biol Sci, 2020, 16(15): 2924-2937. doi:10.7150/ijbs.50074 [27] Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20(3): 143-157. doi:10.1038/s41577-019-0228-2 [28] Rogers C, Alnemri ES. Gasdermins in apoptosis: new players in an old game[J]. Yale J Biol Med, 2019, 92(4): 603-617. [29] Rogers C, Alnemri ES. Gasdermins: novel mitochondrial pore-forming proteins[J]. Mol Cell Oncol, 2019, 6(5): e1621501. doi:10.1080/23723556.2019.1621501 [30] 董娜, 邵峰. 细胞焦亡的机制和功能[J]. 中国科学(生命科学), 2019, 49(12): 1606-1634. doi:10.1360/SSV-2019-0242 DONG Na, SHAO Feng. Molecular mechanism and immunological function of pyroptosis[J]. Scientia Sinica(Vitae), 2019, 49(12): 1606-1634. doi:10.1360/SSV-2019-0242 [31] Zhang Y, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths[J]. Cell Res, 2018, 28(1): 9-21. doi:10.1038/cr.2017.133 [32] Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer[J]. Biomed Pharmacother, 2020, 121: 109595. doi:10.1016/j.biopha.2019.109595 [33] 刘岳衡, 王慧. 细胞焦亡:程序性死亡研究新热点[J]. 临床与病理杂志, 2016, 36(7): 1006-1011. doi:10.3978/j.issn.2095-6959.2016.07.022 LIU Yueheng, Wang Hui. Pyroptosis: a new hotspot in the programmed cell death[J]. Journal of Clinical and Pathological Research, 2016, 36(7): 1006-1011. doi:10.3978/j.issn.2095-6959.2016.07.022 [34] Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017, 277(1): 61-75. doi:10.1111/imr.12534 [35] Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in Sepsis[J]. Immunity, 2018, 49(4): 740-753.e7. doi:10.1016/j.immuni.2018.08.016 [36] Liu L, Sun B. Neutrophil pyroptosis: new perspectives on sepsis[J]. Cell Mol Life Sci, 2019, 76(11): 2031-2042. doi:10.1007/s00018-019-03060-1 [37] Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death[J]. Science, 2018, 362(6418): 1064-1069. doi:10.1126/science.aau2818 [38] Zhang X, Zhang H. Chemotherapy drugs induce pyroptosis through caspase-3-dependent cleavage of GSDME[J]. Sci China Life Sci, 2018, 61(6): 739-740. doi:10.1007/s11427-017-9158-x [39] Bowl MR, Dawson SJ. Age-related hearing loss[J]. Cold Spring Harb Perspect Med, 2019, 9(8): a033217. doi:10.1101/cshperspect.a033217 [40] 吉琳, 申琪, 赵立东. 老年性耳聋的治疗进展[J]. 中华耳科学杂志, 2021, 19(4): 662-665. doi:10.3969/j.issn.1672-2922.2021.04.023 JI Lin, SHEN Qi, ZHAO Lidong. Progress in treatment of presbycusis[J]. Chinese Journal of Otology, 2021, 19(4): 662-665. doi:10.3969/j.issn.1672-2922.2021.04.023 [41] Wang J, Puel JL. Presbycusis: an update on cochlear mechanisms and therapies[J]. J Clin Med, 2020, 9(1): 218. doi:10.3390/jcm9010218 [42] Kawashima T, Harai K, Fujita N, et al. Ninjinyoeito has a protective effect on the auditory nerve and suppresses the progression of age-related hearing loss in mice[J]. Front Nutr, 2020, 7: 528864. doi:10.3389/fnut.2020.528864 [43] Nakanishi H, Prakash P, Ito T, et al. Genetic hearing loss associated with autoinflammation[J]. Front Neurol, 2020, 11: 141. doi:10.3389/fneur.2020.00141 [44] 王健艳, 谭静芊, 杨洛盈, 等. 老年性聋部分致病机制和干预的研究进展[J]. 中华耳科学杂志, 2021, 19(1): 151-156. doi:10.3969/j.issn.1672-2922.2021.01.027 WANG Jianyan, TAN Jingqian, YANG Luoying, et al. Advances in research on pathogenic mechanisms and interventions of presbycusis[J]. Chinese Journal of Otology, 2021, 19(1): 151-156. doi:10.3969/j.issn.1672-2922.2021.01.027 [45] Keithley EM. Pathology and mechanisms of cochlear aging[J]. J Neurosci Res, 2020, 98(9): 1674-1684. doi:10.1002/jnr.24439 [46] Lyu AR, Kim TH, Park SJ, et al. Mitochondrial damage and necroptosis in aging cochlea[J]. Int J Mol Sci, 2020, 21(7): E2505. doi:10.3390/ijms21072505 [47] Marín-Aguilar F, Ruiz-Cabello J, Cordero MD. Aging and the inflammasomes[J]. Exp Suppl, 2018, 108: 303-320. doi:10.1007/978-3-319-89390-7_13 [48] Watson N, Ding B, Zhu X, et al. Chronic inflammation- inflammaging- in the ageing cochlea: a novel target for future presbycusis therapy[J]. Ageing Res Rev, 2017, 40: 142-148. doi:10.1016/j.arr.2017.10.002 [49] Van Laer L, Huizing EH, Verstreken M, et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5[J]. Nat Genet, 1998, 20(2): 194-197. doi:10.1038/2503 [50] 陈嘉伟.耳聋基因DFNA5截短突变致细胞毒性的研究[D]. 西安:中国人民解放军空军军医大学, 2019 [51] 李浩楠.一个新的DFNA5剪接位点突变及其功能研究[D]. 长春:吉林大学, 2018 [52] Op de Beeck K, Van Camp G, Thys S, et al. The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein[J]. Eur J Hum Genet, 2011, 19(9): 965-973. doi:10.1038/ejhg.2011.63 [53] Booth KT, Azaiez H, Kahrizi K, et al. Exonic mutations and exon skipping: lessons learned from DFNA5[J]. Hum Mutat, 2018, 39(3): 433-440. doi:10.1002/humu.23384 [54] Liu X, Xia S, Zhang Z, et al. Channelling inflammation: gasdermins in physiology and disease[J]. Nat Rev Drug Discov, 2021, 20(5): 384-405. doi:10.1038/s41573-021-00154-z [55] 孔艳慧. DFNA5生物学功能和致聋机制初探[D]. 济南:山东大学, 2013 [56] Hu L, Chen M, Chen X, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate[J]. Cell Death Dis, 2020, 11(4): 281. doi:10.1038/s41419-020-2476-2 [57] Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. doi:10.1038/nature22393 [58] Wang J, Ye T, Wang S, et al. Molecular mechanisms and therapeutic relevance of gasdermin E in human diseases[J]. Cell Signal, 2022, 90: 110189. doi:10.1016/j.cellsig.2021.110189 [59] Wang H, Guan J, Guan L, et al. Further evidence for “gain-of-function” mechanism of DFNA5 related hearing loss[J]. Sci Rep, 2018, 8(1): 8424. doi:10.1038/s41598-018-26554-7 [60] 王翔, 刘强和. 老年性耳聋分子机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2013(3): 79-82. doi:10.6040/j.issn.1673-3770.0.2012.323 WANG Xiang, LIU Qianghe. Progress of molecular mechanisms of presbycusis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2013(3): 79-82. doi:10.6040/j.issn.1673-3770.0.2012.323 [61] 于慧柠, 郑体花, 郑庆印. 氧化应激在年龄相关性耳聋中的作用研究进展[J]. 中华耳科学杂志, 2019(5): 777-782. doi:10.3969/j.issn.1672-2922.2019.05.031 YU Huining, ZHENG Tihua, ZHENG Qingyin. Oxidative stress and age-related hearing loss[J]. Chinese Journal of Otology, 2019(5): 777-782. doi:10.3969/j.issn.1672-2922.2019.05.031 [62] Shi X, Qiu S, Zhuang W, et al. NLRP3-inflammasomes are triggered by age-related hearing loss in the inner ear of mice[J]. Am J Transl Res, 2017, 9(12): 5611-5618. [63] 张敏, 李志坚, 王亚敏. 细胞焦亡在眼部疾病中的研究进展[J]. 眼科新进展, 2019, 39(1): 82-85 [64] Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. doi:10.1016/s0140-6736(18)31550-2 [65] Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration[J]. Nat Rev Dis Primers, 2021, 7(1): 31. doi:10.1038/s41572-021-00265-2 [66] Yang M, So KF, Lam WC, et al. Novel programmed cell death as therapeutic targets in age-related macular degeneration? [J]. Int J Mol Sci, 2020, 21(19): E7279. doi:10.3390/ijms21197279 [67] Zhang Y, Jiao Y, Li X, et al. Pyroptosis: a new insight into eye disease therapy[J]. Front Pharmacol, 2021, 12: 797110. doi:10.3389/fphar.2021.797110 [68] Ardeljan CP, Ardeljan D, Abu-Asab M, et al. Inflammation and cell death in age-related macular degeneration: an immunopathological and ultrastructural model[J]. J Clin Med, 2014, 3(4): 1542-1560. doi:10.3390/jcm3041542 [69] Yang M, So KF, Lo ACY, et al. The effect of Lycium barbarum polysaccharides on pyroptosis-associated amyloid β1-40 oligomers-induced adult retinal pigment epithelium 19 cell damage[J]. Int J Mol Sci, 2020, 21(13): E4658. doi:10.3390/ijms21134658 [70] Zhao M, Li S, Matsubara JA. Targeting pyroptotic cell death pathways in retinal disease[J]. Front Med(Lausanne), 2021, 8: 802063. doi:10.3389/fmed.2021.802063 [71] Tseng WA, Thein T, Kinnunen K, et al. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 110-120. doi:10.1167/iovs.12-10655 [72] Sun HJ, Jin XM, Xu J, et al. Baicalin alleviates age-related macular degeneration via miR-223/NLRP3-regulated pyroptosis[J]. Pharmacology, 2020, 105(1-2):28-38. doi:10.1159/000502614 [73] Huang P, Liu W, Chen J, et al. TRIM31 inhibits NLRP3 inflammasome and pyroptosis of retinal pigment epithelial cells through ubiquitination of NLRP3[J]. Cell Biol Int, 2020, 44(11): 2213-2219. doi:10.1002/cbin.11429 [74] 蔡雅文, 柴玉慧, 缪明星, 等. 细胞焦亡介导的阿尔兹海默症发病机制研究进展 [J]. 中国药学杂志, 2021, 56(21): 1701-1705. doi:10.11669/cpj.2021.21.001 CAI Yawen, CHAI Yuhui, MIAO Mingxing, et al. Research Progress of Pyroptosis-Mediated Pathogenesis of Alzheimer's Disease[J]. Chinese Pharmaceutical Journal, 2021, 56(21): 1701-1705. doi:10.11669/cpj.2021.21.001 [75] Onyango IG, Jauregui GV, Carná M, et al. Neuroinflammation in Alzheimer's disease[J]. Biomedicines, 2021, 9(5): 524. doi:10.3390/biomedicines9050524 [76] 张双双, 周石, 王瑞元, 等. 线粒体相关内质网膜影响阿尔茨海默病与帕金森病的研究进展[J]. 中华老年医学杂志, 2021, 40(2): 250-254. doi:10.3760/cma.j.issn.0254-9026.2021.02.025 ZHANG Shuangshuang, ZHOU Shi, WANG Ruiyuan, et al. Research advances in effects of mitochondria-associated endoplasmic reticulum membranes on Alzheimer's disease and Parkinson's disease[J]. Chinese Journal of Geriatrics, 2021(2):250-254. doi:10.3760/cma.j.issn.0254-9026.2021.02.025 [77] 刘春艳, 滑蓉蓉, 邢岩. 载脂蛋白E与阿尔茨海默病的关系[J]. 中华老年医学杂志, 2021, 40(4): 424-427. doi:10.3760/cma.j.issn.0254-9026.2021.04.004 LIU Chunyan, HUA Rongrong, XING Yan. Correlation between apolipoprotein E and Alzheimer's disease[J]. Chinese Journal of Geriatrics, 2021(4):424-427. doi:10.3760/cma.j.issn.0254-9026.2021.04.004 [78] Feng YS, Tan ZX, Wu LY, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease[J]. Ageing Res Rev, 2020, 64: 101192. doi:10.1016/j.arr.2020.101192 [79] Shen H, Han C, Yang Y, et al. Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimer's disease[J]. Brain Behav, 2021, 11(4): e02063. doi:10.1002/brb3.2063 [80] Han C, Yang Y, Guan Q, et al. New mechanism of nerve injury in Alzheimer's disease: β-amyloid-induced neuronal pyroptosis[J]. J Cell Mol Med, 2020, 24(14): 8078-8090. doi:10.1111/jcmm.15439 [81] Tan MS, Tan L, Jiang T, et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease[J]. Cell Death Dis, 2014, 5: e1382. doi:10.1038/cddis.2014.348 [82] Yap JKY, Pickard BS, Chan EWL, et al. The role of neuronal NLRP1 inflammasome in Alzheimer's disease: bringing neurons into the neuroinflammation game[J]. Mol Neurobiol, 2019, 56(11): 7741-7753. doi:10.1007/s12035-019-1638-7 [83] Choubey D. Type I interferon(IFN)-inducible Absent in Melanoma 2 proteins in neuroinflammation: implications for Alzheimer's disease[J]. J Neuroinflammation, 2019, 16(1): 236. doi:10.1186/s12974-019-1639-5 [84] Li J, Zhuang L, Luo X, et al. Protection of MCC950 against Alzheimer's disease via inhibiting neuronal pyroptosis in SAMP8 mice[J]. Exp Brain Res, 2020, 238(11): 2603-2614. doi:10.1007/s00221-020-05916-6 [85] Han C, Hu Q, Yu A, et al. Mafenide derivatives inhibit neuroinflammation in Alzheimer's disease by regulating pyroptosis[J]. J Cell Mol Med, 2021, 25(22): 10534-10542. doi:10.1111/jcmm.16984 [86] 金鑫. 细胞焦亡与眼病[J]. 中华实验眼科杂志, 2017, 35(12): 1130-1133. doi:10.3760/cma.j.issn.2095-0160.2017.12.015 JIN Xin. Pyroptosis and eye disease[J]. Chinese Journal of Experimental Ophthalmology, 2017, 35(12): 1130-1133. doi:10.3760/cma.j.issn.2095-0160.2017.12.015 [87] Zhang X, Zhang Y, Li R, et al. Salidroside ameliorates Parkinson's disease by inhibiting NLRP3-dependent pyroptosis[J]. Aging(Albany NY), 2020, 12(10):9405-9426. doi: 10.18632/aging.103215 [88] 张皓博, 赵宇楠, 杨学军. 细胞焦亡在椎间盘退变中的作用及治疗意义[J]. 中国组织工程研究, 2022, 26(9): 1445-1451 ZHANG Haobo, ZHAO Yunan, YANG Xuejun. Role and therapeutic implications of pyroptosis in intervertebral disc degeneration[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1445-1451 |
[1] | YANG Yingling, GOU Haocheng, FENG Jun. Review of pyroptosis molecular mechanism and applications in head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 160-165. |
[2] | YUAN Yue, FU Shengyao, JIANG Yan, CHEN Min. Research progress of pyroptosis in chronic airway inflammatory disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 166-171. |
[3] | XU Enpei, SUN Xianyong. Diagnosis and treatment of exudative age-related macular degeneration combined with retinal pigment epithelial detachment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 125-142. |
[4] | WANG Luping, KOU Fangning, WANG Hao, ZHANG Canwei, WANG Yanling, YOU Ran, WU Weizhen. Effects of subretinal hyperreflective material on the visual prognosis of anti-VEGF therapy in patients with neovascular macular degeneration [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(6): 101-105. |
[5] | LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. |
[6] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
[7] | JI Shuaifei, ZHANG Jie, YAN Hong. Selection of intraocular lens for patients with age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 36-39. |
[8] | WANG Cui, YAN Xin, ZHAO Bojun. Combination of intravitreal ranibizumab with photodynamic therapy in the treatment of wet age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 94-97. |
[9] | ZHAO Lu, XIE Guoli, WANG Yanling. Changes of ocular hemodynamics after intravitreal ranibizumab injection in patients with wet age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(4): 101-104. |
[10] | DU Zhihong, YU Yafeng.. Effect of NLRP3 inflammasome in the pathogenesis and relapse of eosinophilic nasal polyps. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(1): 31-35. |
[11] | CHEN Chunli, SONG Zongming, JIA Xinguo, ZHOU Zhonglou, WANG Zhaoyang. Erythropoietin inhibits Müller cell apoptosis induced by oxidative damage [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(3): 65-71. |
[12] | ZHANG Ai-hui1, ZHU Ling1, ZHANG Jin-zhi1, ZHANG Wei2. Correlation between cataract phacoemulsification with intraocular lens implantation and age-related macular degeneration [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(5): 77-83. |
[13] | SHAO Yan1, XU Xin-rong2. Advances in study of traditional Chinese medicine on age-related macular degeneration [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(5): 91-94. |
|