Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (4): 166-171.doi: 10.6040/j.issn.1673-3770.0.2022.197
YUAN Yue, FU Shengyao, JIANG Yan, CHEN Min
CLC Number:
[1] Galluzzi L, Vitale I, Aaronson S A, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. doi:10.1038/s41418-017-0012-4 [2] 宋金婷, 刘洋. 细胞焦亡与新生儿脑损伤[J]. 中华围产医学杂志, 2021, 24(4): 314-317. doi:10.3760/cma.j.cn113903-20200810-00767 SONG Jinting, LIU Yang. Pyroptosis and neonatal brain injury: a review[J]. Chinese Journal of Perinatal Medicine, 2021, 24(4): 314-317. doi:10.3760/cma.j.cn113903-20200810-00767 [3] 中华医学会呼吸病学分会哮喘学组. 上-下气道慢性炎症性疾病联合诊疗与管理专家共识[J]. 中华医学杂志, 2017, 97(26): 2001-2022. doi:10.3760/cma.j.issn.0376-2491.2017.26.001 [4] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157(5): 1013-1022. doi:10.1016/j.cell.2014.04.007 [5] Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(9): 688. doi:10.1038/nrd.2018.149 [6] Yang D, He Y, Muñoz-Planillo R, et al. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock[J]. Immunity, 2015, 43(5): 923-932. doi:10.1016/j.immuni.2015.10.009 [7] Liu X, Xia S, Zhang Z, et al. Channelling inflammation: gasdermins in physiology and disease[J]. Nat Rev Drug Discov, 2021, 20(5): 384-405. doi:10.1038/s41573-021-00154-z [8] Sarhan J, Liu BC, Muendlein HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. PNAS, 2018, 115(46): E10888-E10897. doi:10.1073/pnas.1809548115 [9] Shi JJ, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665. doi:10.1038/nature15514 [10] Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis[J]. Trends Cell Biol, 2017, 27(9): 673-684. doi:10.1016/j.tcb.2017.05.005 [11] Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages[J]. Cell Chem Biol, 2017, 24(4): 507-514.e4. doi:10.1016/j.chembiol.2017.03.009 [12] Schneider KS, Groβ CJ, Dreier RF, et al. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity[J]. Cell Rep, 2017, 21(13): 3846-3859. doi:10.1016/j.celrep.2017.12.018 [13] He Y, Hara H, Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021. doi:10.1016/j.tibs.2016.09.002 [14] Place DE, Kanneganti TD. Recent advances in inflammasome biology[J]. Curr Opin Immunol, 2018, 50: 32-38. doi: 10.1016/j.coi.2017.10.011 [15] Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria[J]. Nat Immunol, 2010, 11(12): 1136-1142. doi:10.1038/ni.1960 [16] Duncan JA, Canna SW. The NLRC4 inflammasome[J]. Immunol Rev, 2018, 281(1): 115-123. doi:10.1111/imr.12607 [17] Kang R, Zeng L, Zhu S, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis[J]. Cell Host Microbe, 2018, 24(1): 97-108.e4. doi:10.1016/j.chom.2018.05.009 [18] Ding J, Shao F. SnapShot: the noncanonical inflammasome[J]. Cell, 2017, 168(3): 544-544.e1. doi:10.1016/j.cell.2017.01.008 [19] Qiu S, Liu J, Xing F. ‘Hints’ in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death[J]. Cell Death Differ, 2017, 24(4): 588-596. doi:10.1038/cdd.2017.24 [20] 吴均春, 王士礼. 上下气道炎性疾病相关性研究[J]. 国际耳鼻咽喉头颈外科杂志, 2018, 42(2): 83-89. doi:10.3760/cma.j.issn.1673-4106.2018.02.005 WU Junchun, WANG Shili. Research of the relationship between upper and lower airway inflammatory diseases[J]. International Journal of Otolaryngology-Head and Neck Surgery, 2018, 42(2): 83-89. doi:10.3760/cma.j.issn.1673-4106.2018.02.005 [21] Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017, 277(1): 61-75. doi: 10.1111/imr.12534 [22] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组,中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 变应性鼻炎诊断和治疗指南(2015年,天津)[J]. 中华耳鼻咽喉头颈外科杂志, 2016, 51(1): 6-24. doi: 10.3760/cma.j.issn.1673-0860.2016.01.004 [23] 刘真, 宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129. doi:10.6040/j.issn.1673-3770.0.2021.463 LIU Zhen, SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. doi:10.6040/j.issn.1673-3770.0.2021.463 [24] Yang Z, Liang C, Wang T, et al. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(1): 61-67. doi:10.1016/j.bbrc.2019.11.031 [25] Li J, Zhang Y, Zhang L, et al. Fine particulate matter exposure exacerbated nasal mucosal damage in allergic rhinitis mice via NLRP3 mediated pyroptosis[J]. Ecotoxicol Environ Saf, 2021, 228: 112998. doi:10.1016/j.ecoenv.2021.112998 [26] Wang Y, Chen S, Yang PL, et al. AIM2 inflammasome activation may mediate high mobility group box 1 release in murine allergic rhinitis[J]. Braz J Otorhinolaryngol, 2021, 88(6): 925-931. doi:10.1016/j.bjorl.2020.12.014 [27] Yu X, Wang M, Zhao H, et al. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin(OVA)-induced allergic rhinitis(AR)in mice models[J]. Inflamm Res, 2021, 70(6): 719-729. doi:10.1007/s00011-021-01472-z [28] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001 [29] 杜志宏,于亚峰. NLRP3炎性小体在嗜酸粒细胞性鼻息肉发病及复发中的作用[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 31-35. doi:10.6040/j.issn.1673-3770.0.2015.318 DU Zhihong, YU Yafeng. Effect of NLRP3 inflammasome in the pathogenesis and relapse of eosinophilic nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(1): 31-35, 39. doi:10.6040/j.issn.1673-3770.0.2015.318 [30] Wang Y, Chen S, Wang W, et al. Role of P2X7R in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2021, 24(1): 521. doi:10.3892/mmr.2021.12160 [31] Lin H, Li Z, Lin D, et al. Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Inflammation, 2016, 39(6): 2045-2052. doi:10.1007/s10753-016-0442-z [32] Zhong B, Du J, Liu F, et al. Hypoxia-induced factor-1α induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 582-586. doi:10.1111/all.14571 [33] Harrison BC, Bell ML, Allen DL, et al. Skeletal muscle adaptations in response to voluntary wheel running in myosin heavy chain null mice[J]. J Appl Physiol, 2002, 92(1): 313-322. doi:10.1152/japplphysiol.00832.2001 [34] 中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 支气管哮喘基层诊疗指南(2018年)[J]. 中华全科医师杂志, 2018, 17(10): 751-762. doi:10.3760/cma.j.issn.1671-7368.2018.10.002 [35] 石伊宁, 金永梅, 杨进, 等. 细胞焦亡在呼吸系统疾病中作用的研究进展[J]. 中国病理生理杂志, 2021, 37(5): 956-960. doi:10.3969/j.issn.1000-4718.2021.05.026 SHI Yining, JIN Yongmei, YANG Jin, et al. Advances in role of pyroptosis in respiratory diseases[J]. Chinese Journal of Pathophysiology, 2021, 37(5): 956-960. doi:10.3969/j.issn.1000-4718.2021.05.026 [36] Zasona Z, Flis E, Wilk MM, et al. Caspase-11 promotes allergic airway inflammation[J]. Nat Commun, 2020, 11(1): 1055. doi:10.1038/s41467-020-14945-2 [37] Schroder K, Tschopp J. The inflammasomes[J]. Cell, 2010, 140(6): 821-832. doi:10.1016/j.cell.2010.01.040 [38] Ge X, Cai F, Shang Y, et al. PARK2 attenuates house dust mite-induced inflammatory reaction, pyroptosis and barrier dysfunction in BEAS-2B cells by ubiquitinating NLRP3[J]. Am J Transl Res, 2021, 13(1): 326-335. [39] Chen XF, Xiao Z, Jiang ZY, et al. Schisandrin B attenuates airway inflammation and airway remodeling in asthma by inhibiting NLRP3 inflammasome activation and reducing pyroptosis[J]. Inflammation, 2021, 44(6): 1-15. doi:10.1007/s10753-021-01494-z [40] 世界中医药学会联合会. 国际中医临床实践指南 慢性阻塞性肺疾病[J]. 世界中医药, 2020, 15(7): 1084-1092. doi:10.3969/j.issn.1673-7202.2020.07.026 LI Jiansheng, YU Xueqing, XIE Yang, et al. International clinical practice guideline of Chinese medicine chronic obstructive pulmonary disease[J]. World Chinese Medicine, 2020, 15(7): 1084-1092. doi:10.3969/j.issn.1673-7202.2020.07.026 [41] Dewan NA, Rafique S, Kanwar B, et al. Acute exacerbation of COPD: factors associated with poor treatment outcome[J]. Chest, 2000, 117(3): 662-671. doi:10.1378/chest.117.3.662 [42] Hirota JA, Gold MJ, Hiebert PR, et al. The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/IL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 μm[J]. Am J Respir Cell Mol Biol, 2015, 52(1): 96-105. doi:10.1165/rcmb.2014-0158oc [43] Uh ST, Koo SM, Kim Y, et al. The activation of NLRP3-inflammsome by stimulation of diesel exhaust particles in lung tissues from emphysema model and RAW 264.7 cell line[J]. Korean J Intern Med, 2017, 32(5): 865-874. doi:10.3904/kjim.2016.033 [44] Zhang MY, Jiang YX, Yang YC, et al. Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway[J]. Life Sci, 2021, 269: 119090. doi:10.1016/j.lfs.2021.119090 [45] Wang L, Chen Q, Yu Q, et al. TREM-1 aggravates chronic obstructive pulmonary disease development via activation NLRP3 inflammasome-mediated pyroptosis[J]. Inflamm Res, 2021, 70(9): 971-980. doi:10.1007/s00011-021-01490-x [46] 陈昕, 林媛珍, 钟小宁. 细胞焦亡在慢性阻塞性肺疾病中的研究进展[J]. 重庆医科大学学报, 2020, 45(6): 703-707. doi:10.13406/j.cnki.cyxb.002322 |
[1] | BI Xiaoyun, MA Benxu, WANG Xinru, LI Xuhao, YANG Jiguo. Meta-analysis of randomized controlled trials of acupoint application in treatment of children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 75-85. |
[2] | HOU Lingxiao, ZHANG Changcui, XU Anting, FAN Xintai, WANG Na. Role of CD4+ T cells from nasal mucosa in the pathogenesis of patients with seasonal allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 96-104. |
[3] | YANG Yingling, GOU Haocheng, FENG Jun. Review of pyroptosis molecular mechanism and applications in head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 160-165. |
[4] | WANG Weiyi, SHI Lei, ZHANG Zhiyu, ZHANG Guiling, SHI Guanggang. Effects of high fat diet on allergic rhinitis mice and intestinal flora [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 21-29. |
[5] | ZHAI Rui, LI Yuan, YU Jinglong, CHEN Xi, ZHENG Youyou, LIU Zhaolan, WANG Junhong. Meta-analysis of clinical intradermal acupuncture efficacy for treatment of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 35-45. |
[6] | XIONG Panhui, SHEN Yang,YANG Yucheng. Advancements in the diagnosis and treatment of chronic sinusitis based on phenotypes and endotypes [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 15-19. |
[7] | NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115. |
[8] | LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122. |
[9] | LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. |
[10] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
[11] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
[12] | LIU Houjun, ZHANG Qian, CHENG You, XUE Fei, XU Li, WU Minghai. Relationships between RANTES gene polymorphisms and chronic sinusitis with bilateral nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 165-170. |
[13] | LIU Zheng, FANG Caishan, MAO Shuxian, LAN Wanning, JIN Yan, LIAO Bolin, HUANG Danlin, ZHONG Fangjian, RUAN Yan. Exploring the medication pattern of professor Ruan Yan in the treatment of chronic sinusitis based on data mining [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 202-208. |
[14] | GONG Xiaoyang, CHENG Lei. Analysis of proportion of outpatients with allergic rhinitis during the coronavirus infectious disease 2019 pandemic [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 245-255. |
[15] | ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259. |
|