Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (5): 149-156.doi: 10.6040/j.issn.1673-3770.0.2022.310

• 综述 •    

Advances in the application of optical coherence tomography angiography in the diagnosis and treatment of age-related macular degeneration

ZHANG Xiaohan1, LI Yansong1, WANG Ping2   

  1. 1. Affiliated Hospital of Weifang Medical University(School of Clinical Medicine), Weifang 261053, Shandong, China;
    2. Eye Center, Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong, China
  • Published:2023-05-24

Abstract: Age-related macular degeneration(AMD)is a group of age-related macular diseases associated with multiple pathogenesis such as oxidation stress, complement dysregulation and polymorphism of age-related maculopathy susceptibility 2 allele. The incidence of AMD has been increasing significantly in recent years. The development of the imaging technology provided the conditions for us to study more about AMD, fundus fluorescein angiography(FFA)has been the gold standard for the diagnosis of AMD, however, as an invasive test, FFA can't show the tomographic structure of the lesion. Optical coherence tomography can show the tomographic structure of the retina, but it can't show blood flow patterns. Optical coherence tomography angiography(OCTA)can show the blood flow and structure in all layers of the retina and choroid under non-invasive conditions, and it has become an indispensable tool in studying the pathogenesis, diagnosis and treatment of AMD, because of its unique advantages in showing the blood flow status and structure of the retinal and choroidal vessels. In this paper, we will provide an updated review of the application of OCTA in the diagnosis and treatment of AMD.

Key words: Optical coherence tomography angiography, Age-related macular degeneration, Blood flow density, Choroidal neovascularization

CLC Number: 

  • R774.5
[1] 周慧慧, 吴苗琴. OCTA在湿性年龄相关性黄斑变性诊疗中的研究进展[J]. 国际眼科杂志, 2021, 21(4): 648-651. doi:10.3980 /j.issn.1672-5123.2021.4.16 Zhou Huihui, Wu Miaoqin. Research progress of optical coherence tomography angiography in the diagnosis and treatment of neovascular age-related macular degeneration[J]. International journal of ophthalmology, 2021, 21(4): 648-651. doi:10.3980 /j.issn.1672-5123.2021.4.16
[2] Koustenis A, Harris A, Gross J, et al. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research[J]. Br J Ophthalmol, 2017, 101(1): 16-20. doi:10.1136/bjophthalmol-2016-309389
[3] Jabbarpoor Bonyadi MH, Yaseri M, Nikkhah H, et al. Comparison of ARMS2/LOC387715 A69S and CFH Y402H risk effect in wet-type age-related macular degeneration: a meta-analysis[J]. Int Ophthalmol, 2019, 39(4): 949-956. doi:10.1007/s10792-018-0853-y
[4] Zhang J, Liu Z, Hu S, et al. Meta-Analysis of the pharmacogenetics of ARMS2 A69S polymorphism and the response to advanced age-related macular degeneration[J]. Ophthalmic Res, 2021, 64(2): 192-204. doi:10.1159/000508738
[5] Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. doi:10.1016/S0140-6736(18)31550-2
[6] May A, Su F, Dinh B, et al. Ongoing controversies and recent insights of the ARMS2-HTRA1 locus in age-related macular degeneration[J]. Exp Eye Res, 2021, 210: 108605. doi:10.1016/j.exer.2021.108605
[7] Stahl A. The diagnosis and treatment of age-related macular degeneration[J]. Dtsch Arztebl Int, 2020, 117(29-30): 513-520. doi: 10.3238/arztebl.2020.0513
[8] Ferris FL 3rd, Wilkinson CP, et al. Clinical classification of age-related macular degeneration[J]. Ophthalmology, 2013, 120: 844-851. doi:10.1016/j.ophtha.2012.10.036
[9] Corvi F, Cozzi M, Invernizzi A, et al. Optical coherence tomography angiography for detection of macular neovascularization associated with atrophy in age-related macular degeneration[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259: 291-299. doi:10.1007/s00417-020-04821-6
[10] Ly T, Reynolds R. OCT angiography(OCTA): investigating real-world experience in neovascular AMD new patient clinic when using OCTA compared to the gold standard FFA[J]. Clin Med(Lond), 2020, 20(Suppl 2): s112. doi:10.7861/clinmed.20-2-s112
[11] 梁倩倩,杨庭骅,赵博军.光学相干层析血管扫描在视网膜静脉阻塞中的应用[J].山东大学耳鼻喉眼学报,2019,33(2):139-142. doi:10.6040/j.issn.1673-3770.0.2018.364 LIANG Qianqian, YANG Tinghua, ZHAO Bojun. Application of optical coherence tomography angiography in retinal vein occlusion[J]. J Otolaryngol Ophthalmol Shandong Univ, 2019, 33(2): 139-142. doi:10.6040/j.issn.1673-3770.0.2018.364
[12] 陈有信, 彭先兆. 扫频源光相干断层及血流成像图谱[M]. 北京: 科学技术文献出版社, 2020: 13-18.
[13] 李鹏伟,苏光明,刘江川,等.光学相干断层扫描血管成像在2型黄斑毛细血管扩张症中的应用进展[J].山东大学耳鼻喉眼学报, 2023, 37(1):140-144. doi:10.6040/j.issn.1673-3770.0.2021.450 LI Pengwei, SU Guangming, LIU Jiangchuan, et al. Application of optical coherence tomography angiography in macular telangiectasia type 2[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 140-144. doi: 10.6040/j.issn.1673-3770.0.2021.450.
[14] Told R, Reiter GS, Orsolya A, et al. Swept source optical coherence tomography angiography, fluorescein angiography, and indocyanine green angiography comparisons revisited: Using a novel deep-learning-assisted approach for image registration[J]. Retina, 2020, 40(10): 2010-2017. doi:10.1097/IAE.0000000000002695
[15] Vingopoulos F, Cui Y, Katz R, et al. Widefield swept-source OCTA in Vogt-Koyanagi-Harada disease. Ophthalmic Surg Lasers Imaging Retina, 2020, 51(7): 407-412. doi:10.3928/23258160-20200702-06
[16] Miller AR, Roisman L, Zhang Q, et al. Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2017, 58(3): 1499-1505. doi:10.1167/iovs.16-20969
[17] Su GL, Baughman DM, Zhang Q, et al. Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography[J]. Clin Ophthalmol, 2017, 11: 889-895. doi:10.2147/OPTH.S135479
[18] Zhang Q, Chen CL, Chu Z, et al. Automated quantitation of choroidal neovascularization: A comparison study between spectral-domain and swept-source OCT angiograms[J]. Invest Ophthalmol Vis Sci, 2017, 58(3): 1506-1513. doi:10.1167/iovs.16-20977
[19] Carnevali A, Cicinelli MV, Capuano V, et al. Optical coherence tomography angiography: A useful tool for diagnosis of treatment naive quiescent choroidal neovascularization[J]. Am J Ophthalmol, 2016, 169: 189-198. doi:10.1016/j.ajo.2016.06.042
[20] Lindner M, Bezatis A, Czauderna J, et al.Choroidal thickness in geographic atrophy secondary to age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 875-882. doi:10.1167/iovs.14-14933
[21] Perrott-Reynolds R, Cann R, Cronbach N, et al. The diagnostic accuracy of OCT angiography in naive and treated neovascular age-related macular degeneration: a review[J]. Eye(Lond), 2019, 33(2): 274-282. doi:10.1038/s41433-018-0229-6
[22] Toto L, Borrelli E, Di Antonio L, et al. Retinal vascular plexuses' changes in dry age-related macular degeneration, evaluated by means of optical coherence tomography angiography[J]. Retina, 2016, 36: 1566-1572. doi:10.1097/IAE.0000000000000962
[23] Rogala J, Zangerl B, Assaad N, et al. In vivo quantification of retinal changes associated with drusen in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2015, 56(3): 1689-1700. doi:10.1167/iovs.14-16221
[24] Braun PX, Mehta N, Gendelman I, et al. Global analysis of macular choriocapillaris perfusion in dry age-related macular degeneration using swept-source optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2019, 60(15): 4985-4990. doi:10.1167/iovs.19-27861
[25] Cicinelli MV, Rabiolo A, Sacconi R, et al. Retinal vascular alterations in reticular pseudodrusen with and without outer retinal atrophy assessed by optical coherence tomography angiography[J]. Br J Ophthalmol, 2018, 102(9): 1192-1198. doi:10.1136/bjophthalmol-2017-311317
[26] Spraul CW, Lang GE, Grossniklaus HE, et al. Histologic and morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes[J]. Surv Ophthalmol, 1999, 44: S10-S32. doi:10.1016/s0039-6257(99)00086-7
[27] Bhutto I, Lutty G. Understanding age-related macular degeneration(AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex[J]. Mol Aspects Med, 2012, 33: 295-317. doi:10.1016/j.mam.2012.04.005
[28] Bird AC, Phillips RL, Hageman GS. Geographic atrophy: a histopathological assessment[J]. JAMA Ophthalmol, 2014, 132: 338-345. doi:10.1001/jamaophthalmol.2013.5799
[29] Esmaeelpour M, Ansari-Shahrezaei S, Glittenberg C, et al. Choroid Haller's and Sattler's layer thickness in intermediate age-related macular degeneration with and without fellow neovascular eyes[J]. Invest Ophthalmol Vis Sci, 2014, 55: 5074-5080. doi:10.1167/iovs.14-14646
[30] Waheed NK, Moult EM, Fujimoto JG. Optical coherence tomography angiography of dry age-related macular degeneration[J]. Dev Ophthalmol, 2016, 56: 91-100. doi:10.1159/000442784
[31] Nassisi M, Shi Y, Fan W, et al. Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: a swept-source optical coherence tomography angiography study[J]. Br J Ophthalmol, 2019, 103(7): 911-917. doi:10.1136/bjophthalmol-2018-312643
[32] Sacconi R, Corbelli E, Carnevali A, et al. Optical coherence tomography angiography in geographic atrophy[J]. Retina, 2018, 38(12): 2350-2355. doi:10.1097/IAE.0000000000001873
[33] Biesemeier A, Taubitz T, Julien S, et al. Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration[J]. Neurobiol Aging, 2014, 35: 2562-73. doi:10.1016/j.neurobiolaging.2014.05.003
[34] Choi W, Moult EM, Waheed NK, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy[J]. Ophthalmology, 2015, 122: 2532-44. doi:10.1016/j.ophtha.2015.08.029
[35] Thulliez M, Zhang Q, Shi Y, et al. Correlations between choriocapillaris flow deficits around geographic atrophy and enlargement rates based on swept-source OCT imaging[J]. Ophthalmol Retina, 2019, 3(6): 478-488. doi:10.1016/j.oret.2019.01.024
[36] Mullins RF, Johnson MN, Faidley EA, et al. Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52: 1606-12. doi:10.1167/iovs.10-6476
[37] Schlingemann RO. Role of growth factors and the wound healing response in age-related macular degeneration[J]. Graefes Arch Clin Exp Ophthalmol, 2004, 242: 91-101. doi:10.1007/s00417-003-0828-0
[38] Kvanta A, Casselholm de Salles M, Amrén U, et al. Optical coherence tomography angiography of the foveal microvasculature in geographic atrophy[J]. Retina, 2017, 37: 936-942. doi:10.1097/IAE.0000000000001248
[39] Lee JY, Lee DH, Yoon YH. Correlation between subfoveal choroidal thickness and the severity or progression of nonexudative age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2013, 54: 7812-7818. doi:10.1167/iovs.13-12284
[40] Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55. doi:10.1016/j.preteyeres.2017.11.003
[41] Seddon JM, McLeod DS, Bhutto IA, et al. Histopathological insights into choroidal vascular loss in clinically documented cases of age-related macular degeneration[J]. JAMA Ophthalmo, 2016, 134: 1272-1280. doi:10.1001/jamaophthalmol.2016.3519
[42] Moult EM, Waheed NK, Novais EA, et al. Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy[J]. Retina, 2016, 36(Suppl 1): S2-S11. doi:10.1097/IAE.0000000000001287
[43] Lee B, Ahn J, Yun C, et al.Variation of Retinal and Choroidal Vasculatures in Patients With Age-Related Macular Degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 5246-5255. doi:10.1167/iovs.17-23600
[44] 赵芹,代艳. OCTA观察早期AMD患者黄斑区血流密度及形态结构的变化[J]. 国际眼科杂志, 2020, 20(12): 2170-2174. doi:10.3980/j.issn.1672-5123.2020.12.32 ZHAO Qin, DAI Yai.Observation on changes of blood flow density and morphological structural in macular area of patients with early ARMD using OCTA[J]. International journal of ophthalmology, 2020, 20(12): 2170-2174. doi:10.3980/j.issn.1672-5123.2020.12.32
[45] Lee SC, Tran S, Amin A, et al. Retinal Vessel Density in Exudative and Nonexudative Age-Related Macular Degeneration on Optical Coherence Tomography Angiography[J]. Am J Ophthalmol, 2020, 212: 7-16. doi:10.1016/j.ajo.2019.11.031
[46] Zucchiatti I, Parodi MB, Pierro L, et al. Macular ganglion cell complex and retinal nerve fiber layer comparison in different stages of age-related macular degeneration[J]. Am J Ophthalmol, 2015, 160(3): 602-607. doi:10.1016/j.ajo.2015.05.030
[47] Muftuoglu IK, Ramkumar HL, Bartsch DU, et al. quantitative analysis of the inner retinal layer thicknesses in age-related macular degeneration using corrected optical coherence tomography segmentation[J]. Retina, 2018, 8(8): 1478-1484. doi:10.1097/IAE.0000000000001759
[48] Borrelli E, Abdelfattah NS, Uji A, et al. Postreceptor neuronal loss in intermediate age-related macular degeneration[J].Am J Ophthalmol, 2017, 181: 1-11. doi:10.1016/j.ajo.2017.06.005
[49] Camacho P, Dutra-Medeiros M, Páris L. Ganglion cell complex in early and intermediate age-related macular degeneration: evidence by SD-OCT manual segmentation[J]. Ophthalmologica, 2017, 238(1-2): 31-43. doi:10.1159/000468965
[50] Lamin A, Oakley JD, Dubis AM, et al. Changes in volume of various retinal layers over time in early and intermediate age-related macular degeneration[J]. Eye(Lond), 2019, 33(3): 428-434. doi:10.1038/s41433-018-0234-9
[51] Villegas-Pérez MP, Lawrence JM, Vidal-Sanz M, et al. Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium[J]. J Comp Neurol, 1998, 392(1): 58-77.
[52] Feigl B, Brown B,Lovie-Kitchin J. Postreceptoral adaptation abnormalities in early age-related maculopathy[J]. Vis Neurosci, 2006, 23(6): 863-870. doi:10.1017/S0952523806230190
[53] Arrigo A, Amato A, Barresi C, et al. Choroidal modifications preceding the onset of macular neovascularization in age-related macular degeneration[J]. Ophthalmol Ther, 2022, 11(1): 377-386. doi:10.1007/s40123-021-00443-1
[54] Colantuono D, Souied EH, Borrelli E, et al. Quantitative deep vascular complex analysis of different AMD stages on optical coherence tomography angiography[J]. Eur J Ophthalmol, 2021, 31(5): 2474-2480. doi:10.1177/1120672120968758
[55] Demir M, Akpolat C, Ucak T, et al. Comparison of optical coherence angiography measurements in patients with neovascular and non-neovascular age-related macular degeneration[J]. Sisli Etfal Hastan Tip Bul, 2022, 56(1): 107-112. doi:10.14744/SEMB.2021.41017
[56] Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases[J]. Surv Ophthalmol, 2017, 62: 838-866. doi:10.1016/j.survophthal.2017.05.006
[57] Coscas GJ,Lupidi M,Coscas F,et al.Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge[J].Retina, 2015, 35(11): 2219-2228. doi:10.1097/IAE.0000000000000766
[58] Coscas F, Lupidi M, Boulet JF, et al. Optical coherence tomography angiography in exudative age-related macular degenera-tion: a predictive model for treatment decisions[J]. Br J Ophthalmol, 2019, 103: 1342-1346. doi:10.1136/bjophthalmol-2018-313065
[59] Grassmann F, Mengelkamp J, Brandl C, et al.A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography[J]. Ophthalmology, 2018, 125: 1410-1420. doi:10.1016/j.ophtha.2018.02.037
[60] Arrigo A, Aragona E, Di Nunzio C, et al.Quantitative optical coherence tomography angiography parameters in type 1 macular neovascularization secondary to age-related macular degeneration[J]. Transl Vis Sci Technol, 2020, 9: 48. doi:10.1167/tvst.9.9.48
[61] Bae K, Kim HJ, Shin YK,et al. Predictors of neovascular activity during neovascular age-related macular degeneration treatment based on optical coherence tomography angiography[J]. Sci Rep, 2019, 9: 19240. doi:10.1038/s41598-019-55871-8
[62] Iafe NA, Phasukkijwatana N, Sarraf D. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration[J]. Dev Ophthalmol, 2016, 56: 45-51. doi:10.1159/000442776
[63] Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography [J]. Retina, 2015, 35(11): 2212-2218. doi:10.1097/IAE.0000000000000773
[64] Miere A, Querques G, Semoun O, et al. Optical coherence tomography angiography in early type 3 neovascularization[J]. Retina, 2015, 35: 2236-2241. doi:10.1097/IAE.0000000000001447
[65] 刘爽, 王诗逸, 王子辰, 等. OCTA对湿性年龄相关性黄斑变性脉络膜新生血管诊断价值的Meta分析[J]. 国际眼科杂志, 2021, 21(7): 1213-1220. doi: 10.3980 /j.issn.1672-5123,2021.7.17 LIU Shuang, WANG Shiyi, WANG Zichen, et al. Meta-analysis of diagnostic value of OCTA for choroidal neovascularization of wet age-related macular degeneration[J]. International journal of ophthalmology, 2021, 21(7): 1213-1220. doi: 10.3980 /j.issn.1672-5123, 2021.7.17
[66] Gong J, Yu S, Gong Y, et al. The diagnostic accuracy of optical coherence tomography angiography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography[J]. J Ophthalmol 2016, 2016: 7521478. doi:10.1155/2016/7521478
[67] Cavichini M, Dans KC, Jhingan M, et al. Evaluation of the clinical utility of optical coherence tomography angiography in age-related macular degeneration[J]. Br J Ophthalmol, 2021, 105(7): 983-988. doi:10.1136/bjophthalmol-2020-316622
[68] 汪亮, 吴文生, 周丽, 等. OCTA在湿性年龄相关性黄斑变性疗效评估中的应用[J]. 国际眼科杂志, 2020, 20(6): 1071-1074. doi: 10.3980 /j.issn.1672-5123.2020.6.32 WANG Liang, WU Wensheng, ZHOU Li, et al. OCTA in evaluating therapeutic effect of wet age-related macular degeneration[J]. International journal of ophthalmology, 2020, 20(6): 1071-1074. doi: 10.3980 /j.issn.1672-5123.2020.6.32
[1] XU Enpei, SUN Xianyong. Diagnosis and treatment of exudative age-related macular degeneration combined with retinal pigment epithelial detachment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 125-142.
[2] CHU Baorui, QU Yi. Preparation of siIKKβ loaded lipid nanoparticles and assessment of their effect on repolarization of macrophages [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 91-97.
[3] LI Pengwei, SU Guangming, LIU Jiangchuan, MU Yalin. Application of optical coherence tomography angiography in macular telangiectasia type 2 [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 140-144.
[4] WANG Luping, KOU Fangning, WANG Hao, ZHANG Canwei, WANG Yanling, YOU Ran, WU Weizhen. Effects of subretinal hyperreflective material on the visual prognosis of anti-VEGF therapy in patients with neovascular macular degeneration [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(6): 101-105.
[5] TANG Feiran, KONG XiangyunOverview,SHEN JiaquanGuidance. Research progress in the role of OCTA in measuring superficial peripapillary vessel density in the diagnosis and treatment of glaucoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 77-82.
[6] YANG Ru, ZHANG Yuguang, XU Xianghui, WU Xuelian, TAO Yuan, TAN Yue. A clinical study on the effect of phacoemulsification on the retinal structure in the macular region of senile cataract [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 97-102.
[7] ZHANG Taoran, WANG Wei, LI Mingming, HUANG Yingxiang. Subfoveal choroidal thickness changes following intravitreal ranibizumab treatment in choroidal neovascularization due to pathological myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 68-71.
[8] ZHANG Xinyu,,LEI Chunyan, ZHANG Meixia. Retinochoriodal changes associated with silicone oil tamponade detected by optical coherence tomography and optical coherence tomography angiography [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 132-136.
[9] . Diagnosis and treatment of choroidal neovascularization in pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 157-162.
[10] Ocular ischemic syndrome(OIS)is usually undiagnosed or misdiagnosed due to its asymptomatic onset, complicated ocular manifestations, and the lack of awareness, and patients with OIS have a higher mortality. Improving the understanding, diagnosis, and treatment of OIS through multidisciplinary collaboration is key to investigating and preventing systemic vascular events as well as decreasing blindness and mortality. This review summarizes the recent advances in the epidemiology, clinical diagnosis, and management of OIS.. Recent ocular ischemic syndrome advancesWANG Luping Overview HUANG Yingxiang, WANG Yanling Guidance Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 23-27.
[11] LI Rui, LI Yong, XIE Hongtao, YUE ZhangXian, LIU Zhaochen, YUAN huimin. Effects of intraocular lens implantation and postoperative intraocular pressure fluctuations on the fundus macular and optic disc vascular density [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(1): 89-92.
[12] LIANG Qianqian, YANG Tinghua, ZHAO Bojun. Application of optical coherence tomography angiography in retinal vein occlusion [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 139-142.
[13] JI Shuaifei, ZHANG Jie, YAN Hong. Selection of intraocular lens for patients with age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 36-39.
[14] WANG Cui, YAN Xin, ZHAO Bojun. Combination of intravitreal ranibizumab with photodynamic therapy in the treatment of wet age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 94-97.
[15] ZHAO Lu, XIE Guoli, WANG Yanling. Changes of ocular hemodynamics after intravitreal ranibizumab injection in patients with wet age-related macular degeneration. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(4): 101-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!