Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (1): 72-78.doi: 10.6040/j.issn.1673-3770.0.2022.518
• Review • Previous Articles Next Articles
ZHOU Yingdong1, ZHANG Mengxian1, WANG Qingling1, KANG Haoran2, GUO Xiangdong2
CLC Number:
[1] 郭向东, 王青玲, 张梦娴, 等. 基于自噬与凋亡平衡探讨补肾活血汤对衰老耳蜗毛细胞株HEI-OC1的保护作用[J]. 中国老年学杂志, 2022, 42(2): 371-376. doi:10.3969/j.issn.1005-9202.2022.02.031 GUO Xiangdong, WANG Qingling, ZHANG Mengxian, et al. Protective effect of Bushen Huoxue Decoction on aging cochlear hair cell line HEI-OC1 based on autophagy and apoptosis balance[J]. Chinese Journal of Gerontology, 2022, 42(2): 371-376. doi:10.3969/j.issn.1005-9202.2022.02.031 [2] Qi F, Zhang RS, Chen J, et al. Down-regulation of Cav1.3 in auditory pathway promotes age-related hearing loss by enhancing calcium-mediated oxidative stress in male mice[J]. Aging, 2019, 11(16): 6490-6502. doi:10.18632/aging.102203 [3] Han BA, Zhou T, Tu YQ, et al. Correlation between mitochondrial DNA 4977 bp deletion and presbycusis: a system review and meta-analysis[J]. Medicine, 2019, 98(27): e16302. doi:10.1097/MD.0000000000016302 [4] Du ZD, He L, Tu CM, et al. Mitochondrial DNA 3, 860-bp deletion increases with aging in the auditory nervous system of C57BL/6J mice[J]. ORL J Otorhinolaryngol Relat Spec, 2019, 81(2/3): 92-100. doi:10.1159/000499475 [5] Kim MJ, Haroon S, Chen GD, et al. Increased burden of mitochondrial DNA deletions and point mutations in early-onset age-related hearing loss in mitochondrial mutator mice[J]. Exp Gerontol, 2019, 125: 110675. doi:10.1016/j.exger.2019.110675 [6] Zhang Y, Huang S, Dai X, et al. SOD2 alleviates hearing loss induced by noise and kanamycin in mitochondrial DNA4834-deficient rats by regulating PI3K/MAPK signaling[J]. Curr Med Sci, 2021, 41(3): 587-596. doi:10.1007/s11596-021-2376-4 [7] Li J, Dai X, He XL, et al. Effect of SOD2 methylation on mitochondrial DNA4834-bp deletion mutation in marginal cells under oxidative stress[J]. Bosn J Basic Med Sci, 2020, 20(1): 70-77. doi:10.17305/bjbms.2019.4353 [8] Miwa T, Wei FY, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss[J]. Mol Brain, 2021, 14(1): 82. doi:10.1186/s13041-021-00791-w [9] 魏薇, 杨丽辉, 熊伟, 等. 老年性聋小鼠耳蜗带状突触损伤特点及机制研究[J]. 中华耳科学杂志, 2019, 17(2): 198-202. doi:10.3969/j.issn.1672-2922.2019.02.011 WEI Wei, YANG Lihui, XIONG Wei, et al. Characteristics of cochlear ribbon synapses damage in aging mice and possible mechanisms[J]. Chinese Journal of Otology, 2019, 17(2): 198-202. doi:10.3969/j.issn.1672-2922.2019.02.011 [10] 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117. doi: 10.6040/j.issn.1673-3770.0.2022.147 SUO Anqi, YANG Xinxin. Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 111-117. doi: 10.6040/j.issn.1673-3770.0.2022.147 [11] Jiao LL, Du XX, Li Y, et al. Role of mitophagy in neurodegenerative diseases and potential tagarts for therapy[J]. Mol Biol Rep, 2022, 49(11): 10749-10760. doi:10.1007/s11033-022-07738-x [12] Youn CK, Jun Y, Jo ER, et al. Age-related hearing loss in C57BL/6J mice is associated with mitophagy impairment in the central auditory system[J]. Int J Mol Sci, 2020, 21(19): 7202. doi:10.3390/ijms21197202 [13] Oh J, Youn CK, Jun Y, et al. Reduced mitophagy in the cochlea of aged C57BL/6J mice[J]. Exp Gerontol, 2020, 137: 110946. doi:10.1016/j.exger.2020.110946 [14] Kim YJ, Choo OS, Lee JS, et al. BCL2 interacting protein 3-like/NIX-mediated mitophagy plays an important role in the process of age-related hearing loss[J]. Neuroscience, 2021, 455: 39-51. doi:10.1016/j.neuroscience.2020.12.005 [15] Cho SI, Jo ER, Song H. Urolithin A attenuates auditory cell senescence by activating mitophagy[J]. Sci Rep, 2022, 12(1): 7704. doi:10.1038/s41598-022-11894-2 [16] Lin HQ, Xiong H, Su ZW, et al. Inhibition of DRP-1-dependent mitophagy promotes cochlea hair cell senescence and exacerbates age-related hearing loss[J]. Front Cell Neurosci, 2019, 13: 550. doi:10.3389/fncel.2019.00550 [17] Xiong H, Chen SJ, Lai L, et al. Modulation of miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and delays age-related hearing loss through coordinated regulation of mitophagy and mitochondrial biogenesis[J]. Neurobiol Aging, 2019, 79: 30-42. doi:10.1016/j.neurobiolaging.2019.03.013 [18] 张依, 王文俊, 杨安怀. SIRT1激动剂白藜芦醇在眼部疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 151-156. doi: 10.6040/j.issn.1673-3770.0.2021.070 ZHANG Yi, WANG Wenjun, YANG Anhuai. Research progress of SIRT1 activation by resveratrol in ocular diseases[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 151-156. doi: 10.6040/j.issn.1673-3770.0.2021.070 [19] Pang JQ, Xiong H, Ou YK, et al. SIRT1 protects cochlear hair cell and delays age-related hearing loss via autophagy[J]. Neurobiol Aging, 2019, 80: 127-137. doi:10.1016/j.neurobiolaging.2019.04.003 [20] Li Q, Zang YZ, Sun ZW, et al. Long noncoding RNA Gm44593 attenuates oxidative stress from age-related hearing loss by regulating miR-29b/WNK1[J]. Bioengineered, 2022, 13(1): 573-582. doi:10.1080/21655979.2021.2012062 [21] Hao SJ, Wang L, Zhao K, et al. Rs1894720 polymorphism in MIAT increased susceptibility to age-related hearing loss by modulating the activation of miR-29b/SIRT1/PGC-1α signaling[J]. J Cell Biochem, 2019, 120(4): 4975-4986. doi:10.1002/jcb.27773 [22] Xie W, Shu T, Peng HS, et al. LncRNA H19 inhibits oxidative stress injury of cochlear hair cells by regulating miR-653-5p/SIRT1 axis[J]. Acta Biochim Biophys Sin(Shanghai), 2022, 54(3): 332-339. doi:10.3724/abbs.2022018 [23] Su ZW, Xiong H, Pang JQ, et al. LncRNA AW112010 promotes mitochondrial biogenesis and hair cell survival: implications for age-related hearing loss[J]. Oxid Med Cell Longev, 2019: 6150148. doi:10.1155/2019/6150148 [24] Kim HJ, Cao W, Oh GS, et al. Augmentation of cellular NAD+ by NQO1 enzymatic action improves age-related hearing impairment[J]. Aging Cell, 2019, 18(5): e13016. doi:10.1111/acel.13016 [25] Wu H, Sun HY, He ZH, et al. The effect and mechanism of 19S proteasome PSMD11/Rpn6 subunit in D-Galactose induced mimetic aging models[J]. Exp Cell Res, 2020, 394(1): 112093. doi:10.1016/j.yexcr.2020.112093 [26] Zhang Y, Huang X, Zhao XY, et al. Role of the ubiquitin C-terminal hydrolase L1-modulated ubiquitin proteasome system in auditory cortex senescence[J]. ORL J Otorhinolaryngol Relat Spec, 2017, 79(3): 153-163. doi:10.1159/000468944 [27] Villalpando-Rodriguez GE, Gibson SB. Reactive oxygen species(ROS)regulates different types of cell death by acting as a rheostat[J]. Oxid Med Cell Longev, 2021: 9912436. doi:10.1155/2021/9912436 [28] Murthy AMV, Robinson N, Kumar S. Crosstalk between cGAS-STING signaling and cell death[J]. Cell Death Differ, 2020, 27(11): 2989-3003. doi:10.1038/s41418-020-00624-8 [29] Chen C, Zhang JY, Guo ZB, et al. Effect of oxidative stress on AIF-mediated apoptosis and bovine muscle tenderness during postmortem aging[J]. J Food Sci, 2020, 85(1): 77-85. doi:10.1111/1750-3841.14969 [30] Wang L, Liu Y, Zhang X, et al. Endoplasmic reticulum stress and the unfolded protein response in cerebral ischemia/reperfusion injury[J]. Front Cell Neurosci, 2022, 16: 864426. doi:10.3389/fncel.2022.864426 [31] Lee YY, Gil ES, Jeong IH, et al. Heat shock factor 1 prevents age-related hearing loss by decreasing endoplasmic reticulum stress[J]. Cells, 2021, 10(9): 2454. doi:10.3390/cells10092454 [32] Xu A, Shang WJ, Wang Y, et al. ALA protects against ERS-mediated apoptosis in a cochlear cell model with low citrate synthase expression[J]. Arch Biochem Biophys, 2020, 688: 108402. doi:10.1016/j.abb.2020.108402 [33] Cai H, Han BA, Hu YJ, et al. Metformin attenuates the Dgalactoseinduced aging process via the UPR through the AMPK/ERK1/2 signaling pathways[J]. Int J Mol Med, 2020, 45(3): 715-730. doi:10.3892/ijmm.2020.4453 [34] Li HC, Lu MS, Zhang HW, et al. Downregulation of REST in the cochlea contributes to age-related hearing loss via the p53 apoptosis pathway[J]. Cell Death Dis, 2022, 13(4): 343. doi:10.1038/s41419-022-04774-0 [35] Zhu RZ, Li BS, Gao SS, et al. Luteolin inhibits H2O2-induced cellular senescence via modulation of SIRT1 and p53[J]. Korean J Physiol Pharmacol, 2021, 25(4): 297-305. doi:10.4196/kjpp.2021.25.4.297 [36] 楚敏, 阎希芮, 龚永昌, 等. 耳聋左慈丸对H2O2损伤小鼠耳蜗基底膜miR-34a的作用及机制[J]. 中国药理学通报, 2021, 37(12): 1757-1762. doi:10.3969/j.issn.1001-1978.2021.12.021 CHU Min, YAN Xirui, GONG Yongchang, et al. Effects of Erlong Zuoci Wan on miR-34a in H2O2 damaged cochlear basilar membranes and mechanism research[J]. Chinese Pharmacological Bulletin, 2021, 37(12): 1757-1762. doi:10.3969/j.issn.1001-1978.2021.12.021 [37] 龚永昌, 李宁, 王艺蓉, 等. 耳聋左慈丸通过调节miR-34a对HEI-OC1听细胞自噬和凋亡的影响[J]. 中华中医药杂志, 2022, 37(2): 740-744 GONG Yongchang, LI Ning, WANG Yirong, et al. Effects of Erlong Zuoci Pills on autophagy and apoptosis of HEI-OC1 cells by regulating miR-34a[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2022, 37(2): 740-744 [38] He ZH, Li M, Fang QJ, et al. FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway[J]. Autophagy, 2021, 17(12): 4341-4362. doi:10.1080/15548627.2021.1916194 [39] Abdel Salam S, Mostafa F, Alnamshan MM, et al. Thymoquinone ameliorates age-related hearing loss in C57BL/6J mice by modulating Sirt1 activity and Bak1 expression[J]. Biomed Pharmacother, 2021, 143: 112149. doi:10.1016/j.biopha.2021.112149 [40] Zhao JJ, Li G, Zhao X, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss[J]. Aging, 2020, 12(7): 5590-5611. doi:10.18632/aging.102977 [41] Sánchez-Rodríguez C, Cuadrado E, Riestra-Ayora J, et al. Polyphenols protect against age-associated apoptosis in female rat cochleae[J]. Biogerontology, 2018, 19(2): 159-169. doi:10.1007/s10522-018-9747-7 [42] Li J, Jia BW, Cheng Y, et al. Targeting molecular mediators of ferroptosis and oxidative stress for neurological disorders[J]. Oxid Med Cell Longev, 2022: 3999083. doi:10.1155/2022/3999083 [43] Chen X, Li D, Sun HY, et al. Relieving ferroptosis may partially reverse neurodegeneration of the auditory cortex[J]. FEBS J, 2020, 287(21): 4747-4766. doi:10.1111/febs.15266 [44] Zhang L, Hou NN, Chen B, et al. Post-translational modifications of p53 in ferroptosis: novel pharmacological targets for cancer therapy[J]. Front Pharmacol, 2022, 13: 908772. doi:10.3389/fphar.2022.908772 [45] Tian CW, Liu YF, Li ZS, et al. Mitochondria related cell death modalities and disease[J]. Front Cell Dev Biol, 2022, 10: 832356. doi:10.3389/fcell.2022.832356 [46] Zhao X, Quan J, Tan Y, et al. RIP3 mediates TCN- induced necroptosis through activating mitochondrial metabolism and ROS production in chemotherapy-resistant cancers[J]. Am J Cancer Res, 2021, 11(3): 729-745 [47] Uni R, Choi ME. Novel roles of necroptosis mediator receptor-interacting protein kinase 3 in kidney injury[J]. Nephron, 2022, 146(3): 259-263. doi:10.1159/000517732 [48] Lyu AR, Kim TH, Park SJ, et al. Mitochondrial damage and necroptosis in aging cochlea[J]. Int J Mol Sci, 2020, 21(7): 2505. doi:10.3390/ijms21072505 [49] Su ZW, Xiong H, Liu Y, et al. Transcriptomic analysis highlights cochlear inflammation associated with age-related hearing loss in C57BL/6 mice using next generation sequencing[J]. PeerJ, 2020, 8: e9737. doi:10.7717/peerj.9737 [50] Kishino A, Hayashi K, Maeda M, et al. Caspase-8 regulates endoplasmic reticulum stress-induced necroptosis independent of the apoptosis pathway in auditory cells[J]. Int J Mol Sci, 2019, 20(23): 5896. doi:10.3390/ijms20235896 [51] Choi ME, Price DR, Ryter SW, et al. Necroptosis: a crucial pathogenic mediator of human disease[J]. JCI Insight, 2019, 4(15): e128834. doi:10.1172/jci.insight.128834 [52] Yang ZY, Zhang Y, Yang SL, et al. Low-dose resveratrol inhibits RIPK3-mediated necroptosis and delays the onset of age-related hearing loss[J]. Front Pharmacol, 2022, 13: 910308. doi:10.3389/fphar.2022.910308 |
[1] | ZHOU Jiamin, SONG Yuwan, SUN Yan. Research progress of pyroptosis in senile degenerative diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 172-180. |
[2] | SUO Anqi, YANG Xinxin. Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 111-117. |
[3] | LI Mengting, HE Shuxi, WANG Hua. Research progress of inflammatory factors in Keratoconus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 151-158. |
[4] | SU Jie, YANG Fuyu, LI Meng, CHEN Huiru, JIANG Lisheng, WANG Lixiang. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34. |
[5] | ZHANG Yi, WANG Wenjun,YANG Anhuai. Research progress of SIRT1 activation by resveratrol in ocular diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 151-156. |
[6] | FU Yihao, XU Yixuan,YAN Hong, ZHANG Jie. Recent research advances in the role of glutaredoxin in oculopathy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 125-130. |
[7] | SONG Fan, HUANG Weijun, XU Huajun, GUAN Jian, YI Hongliang. Relationship between carotid elasticity and oxidative stress in patients with obstructive sleep apnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 99-104. |
[8] | ZHANG Zhuan, LIU Tao, BAI Zhili, ZHOU Changming. Evolution of oxidative stress in the pathogenesis and treatment of noise-induced hearing loss. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 101-103. |
[9] | . Effects of rosiglitazone on oxidative stress and cognitive function in mice exposed to intermittent hypoxia. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(1): 45-49. |
[10] | LI Yanzhong. Obesity and obstructive sleep apnea. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(5): 1-4. |
[11] | LI Langen, WEI Wei, ZHANG Yufeng, Geriletu, YANG Jia, ZHANG Yanmei. The experiment of SIRT1 on against oxidative stress to retinal pigmented epithelium cells [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(6): 56-59. |
[12] | LIU Hong, WANG Shuai, WANG Hai-bo. Review on mtDNACD4977 and presbyacusis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(4): 95-99. |
[13] | ZHANG Shu-jia1, LI Pei-hua2, JIA Wen-bo1, XU Heng-guang1, BAO Feng-xiang1, LI Li1. 1. Expression and clinical significance of programmed cell death 5 (PDCD5) in laryngeal squamous cell carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(2): 23-26. |
[14] | BI Hong-sheng,LI Shu-jie,CUI Yan,WANG Hui . Effect of tea polyphenols in preventing diabetic cataracts induced by streptozotocin in rats and its mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(1): 1-05 . |
|