山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 105-112.doi: 10.6040/j.issn.1673-3770.0.2020.393
刘寨1,2,应民政2
LIU Zhai1,2,YING Minzheng2
摘要: 环状RNA(circRNAs)是一类新发现的广泛存在于真核生物中没有5'帽状结构和3'腺苷酸尾的非编码RNA,并可能通过多种影响方式参与生物基因表达调控。例如,近来发现有些 circRNAs 含有微小RNA(miRNAs)相应序列的结合位点,可充当分子海绵,结合 miRNA 并阻断其对mRNA表达的抑制作用。最新研究表明,某些circRNAs 在变应性鼻炎(AR)鼻黏膜中表达丰富,且参与多种AR相关细胞因子的调控,但目前尚未见circRNAs与人类AR严重程度的相关性研究。简述circRNAs的形成机制、特征及生物学功能,阐述circRNAs 的转录后调控与分子海绵作用,综述circRNAs在AR的诊断和治疗方面上的潜力,并为未来AR的研究提供理论支持。
中图分类号:
[1] Wang XD, Zheng M, Lou HF, et al. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011[J]. Allergy, 2016, 71(8): 1170-1180.doi: 10.1111/all.12874. [2] Rouve S, Didier A, Demoly P, et al. Numeric score and visual analog scale in assessing seasonal allergic rhinitis severity[J]. Rhinology, 2010, 48(3):285-91. doi: 10.4193/Rhin09.208. [3] Zhu X, Wang X, Wang Y, et al. The regulatory network among CircHIPK3, LncGAS5, and miR-495 promotes Th2 differentiation in allergic rhinitis[J]. Cell Death Dis. 2020, 11(4):216. doi: 10.1038/s41419-020-2394-3. [4] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8):981-984. doi:10.1038/cr.2015.82. [5] Bahn JH, Zhang Q, Li F,et al. The landscape of microRNA, Piwi-interacting RNA,ang circular RNA in human saliva[J]. Clin Chem, 2015, 61(1): 221-230. doi:10.1373/clinchem.2014.230433. [6] Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7: 11215. doi:10.1038/ncomms11215. [7] Petkovic S, Muller S. RNA circularization stratagies in vivo and in vitro[J]. Nucleic Acids Res, 2015, 43(4): 2454-2465. doi:10.1093/nar/gkv045. [8] WANG D, LI Z, WU Y. The Research Progression and Clinical Significance of Circular RNAs in Head and Neck Cancers[J]. BioMed Research International, 2020. doi: 10.1155/2020/2712310. [9] Yin Y, Long J, He Q, et al. Emerging roles of circRNA in formation and progression of cancer[J]. J Cancer. 2019, 10(21): 5015-5021. doi: 10.7150/jca.30828. [10] 胡思洁, 魏萍, 寇巍, 等.变应性鼻炎患病率及危险因素Meta分析[J].临床耳鼻咽喉头颈外科杂志, 2017, 31(19):1485-1491. doi: 10.13201/j.issn.1001-1781.2017.19.006. HU Sijie, WEI Ping, KOU Wei, et al. Prevalence and risk factors of allergic rhinitis: a Meta-analysis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2017, 31(19): 1485-1491. doi:10.13201/j.issn.1001-1781.2017.19.006. [11] Eifan AO, Durham SR. Pathogenesis of rhinitis[J]. Clin Exp Allergy, 2016, 46(9): 1139-1151. doi:10.1111/cea.12780. [12] 顾瑜蓉, 李华斌. 变应性鼻炎的发病机制与精准治疗[J]. 中国耳鼻咽喉颅底外科杂志, 2019, 25(6): 578-584. doi: 10.11798/j.issn.1007-1520.201906002. GU Yurong, LI Huabin. Allergic rhinitis: pathogenesis and precision medicine[J]. Chin J Otorhinolaryngol-Skull Base Surg, 2019, 25(6): 578-584. doi:10.11798/j.issn.1007-1520.201906002. [13] Xie Fengmei, Hu Quanfu, Cai Qinfang, et al. IL-35 Inhibited Th17 Response in Children with Allergic Rhinitis[J]. ORL; Journal for Oto-rhino-laryngology and Its Related Specialties, 2020, 82(1): 47-52. doi:10.1159/000504197 [14] Castelli Sveva, arasi Stefania, Tripodi Salvatore, et al. IgE antibody repertoire in nasal secretions of children and adults with seasonal allergic rhinitis: a molecular analysis[J]. Pediatric allergy and immunology, 2020, 31(3): 273-280. doi:10.1111/pai.13148. [15] V Sorbello, G Ciprandi, A Di Stefano, et al. Nasal IL-17F is related to bronchial IL-17F/neutrophilia and exacerbations in stable atopic severe asthma[J]. Allergy, 2015, 70(2): 236-240. doi: 10.1111/all.12547. [16] Han Myung Woul, Kim Song Hee, Oh Inbo, et al. Serum IL-1β can be a biomarker in children with severe persistent allergic rhinitis[J]. Allergy Asthma Clin Immunol. 2019, 15: 58. doi: 10.1186/s13223-019-0368-8. [17] Deng Tian, Yang Lan, Zheng Zhichao, et al. Calcitonin generelated peptide induces IL-6 expression in RAW264.7 macrophages mdiated by mmu_circRNA_007893.[J]. Mol Med Rep, 2017, 16(6): 9367-9374. doi: 10.3892/mmr.2017.7779. [18] Zhenli Huang, Yong Cao, Min Zhou, et al. Hsa_circ_0005519 increases IL-13/IL-6 by regulating hsa-let-7a-5p in CD4+ T cells to affect asthma[J]. Clin Exp Allergy, 2019, 49(8): 1116-1127. doi: 10.1111/cea.13445. [19] Wang Z, Ji N, Chen Z, et al. MiR-1165-3p Suppresses Th2 Differentiation via Targeting IL-13 and PPM1A in a Mouse Model of Allergic Airway Inflammation[J]. Allergy Asthma Immunol Res, 2020, 12(5): 859-876. doi: 10.4168/aair.2020.12.5.859. [20] 程雷,钱俊俊,田慧琴.变应性鼻炎研究的若干进展[J].山东大学耳鼻喉眼学报,2017,31(3):1-3. Doi: 10.6040 /j.issn.1673-3770.1.2017.021. CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021. [21] 张辉,郑成彩,冯慧伟,等.变应性鼻炎患者外周血EOS-CSF、IL-5水平及EOS数目对局部皮质类固醇激素治疗效果的评价[J].山东大学耳鼻喉眼学报,2015,29(5):43-46. doi: 10.6040 /j.issn.1673-3770.0.2015.290. ZHANG Hui, ZHENG Chengcai, FENG Huiwei, et al. Valuation of the therapeutic effect of the nasal steroid hormone spray to detect EOS-CSF, IL-5 levels, EOS number of peripheral blood in allergic rhinitis patients[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2015(5): 43-46. doi:10.6040/j.issn.1673-3770.0.2015.290. [22] Zhu YQ, Liao B, Liu YH, et al. MicroRNA-155 plays critical effects on Th2 factors expression and allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis[J]. Eur Rev Med Pharmacol Sci, 2019,23(10):4097-4109. doi: 10.26355/eurrev_201905_17911. [23] Ying Xiwang, Zhu Jianwei, Zhang Yuanhui. Circular RNA circ-TSPAN4 promotes lung adenocarcinoma metastasis by upregulating ZEB1 via sponging miR-665[J]. Mol Genet Genomic Med, 2019, 7(12): e991. doi: 10.1002/mgg3.991. [24] Cui D, Qian R, Li Y. Circular RNA circ-CMPK1 contributes to cell proliferation of non-small cell lung cancer by elevating cyclin D1 via sponging miR-302e[J]. Mol Genet Genomic Med, 2020, 8(2): e999. doi: 10.1002/mgg3.999. [25] Wang Yaqiu, Li Huiping, Lu Hong, et al. Circular RNA SMarCA5 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by miR-19b-3p/HOXA9 axis[J]. OncoTargets and therapy, 2019, 12: 7055-7065. doi: 10.2147/OTT.S216320. [26] Zhu Kai, Zhan Hao, Peng Yuanfei, et al. Plasma hsa_circ_0027089 is a diagnostic biomarker for hepatitis B virus-related hepatocellular carcinoma[J]. Carcinogenesis, 2019, 41(3): 296-302. doi:10.1093/carcin/bgz154. [27] Hua Xu, Yin Sun, Bosen You, et al. Androgen receptor reverses the oncometabolite R-2-hydroxyglutarate-induced prostate cancer cell invasion via suppressing the circRNA-51217/miRNA-646/TGFβ1/p-Smad2/3 signaling[J]. Cancer Letters, 2020, 472: 151-164. doi:10.1016/j.canlet.2019.12.014. [28] Mayoral RJ, Pipkin ME, Pachkov M, et al.MicroRNA-221- 222 regulate the cell cycle in mast cells[J]. J Immunol, 2009, 182(1): 433-445. doi: 10.4049/jimmunol.182.1.433. [29] Bazan HA, Hatfield SA, Brug A, et al. Carotid Plaque Rupture Is Accompanied by an Increase in the Ratio of Serum circR-284 to miR-221 Levels[J]. Circ Cardiovasc Genet, 2017, 10(4): e001720. doi: 10.1161/CIRCGENETICS.117.001720. [30] Berker M, Frank LJ, Geβner AL, et al. Allergies -A T cells perspective in the era beyond the T(H)1 /T(H)2 paradigm[J]. Clin Immunol, 2017, 174: 73-83. doi: 10.1016/j.clim.2016.11.001. [31] Yang L, Zhang C, Bai X, et al. hsa_circ_0003738 Inhibits the Suppressive Function of Tregs by Targeting miR-562/IL-17A and miR-490-5p/IFN-γ Signaling Pathway[J]. Mol Ther Nucleic Acids, 2020, 21: 1111-1119. doi: 10.1016/j.omtn.2020.08.001. [32] Zhou X, Li J, Zhou Y, et al. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis[J]. Aging(Albany NY), 2020. doi: 10.18632/aging.103731. [33] 尹雪, 任秀敏, 刘春苗, 等.变应性鼻炎患者 IL-35 对于Treg /Th17 细胞平衡的调控作用[J].临床耳鼻咽喉头颈外科杂志, 2016, 30(3): 213-216.doi:10.13201/j.issn.1001-1781.2016.03.011. YIN Xue, REN Xiumin, LIU Chunmiao, et al. The regulatory effect of IL-35 on the balance of Treg/Th17 cells in allergic rhinitis patients[J]. J Clin Otorhinolaryngol Head Neck Surg, 2016, 30(3): 213-216. doi:10.13201/j.issn.1001-1781.2016.03.011. [34] Chen Q, Mang G, Wu J, et al. Circular RNA circSnx5 Controls Immunogenicity of Dendritic Cells through the miR-544/SOCS1 Axis and PU.1 Activity Regulation[J]. Mol Ther, 2020. doi: 10.1016/j.ymthe.2020.07.001. [35] Deng Tian, Yang Lan, Zheng Zhichao, et al. Calcitonin gene-related peptide induces IL-6 expression in RAW264.7 macrophages mediated by mmu_circRNA_007893[J]. Molecular medicine reports, 2017, 16(6): 9367-9374. doi: 10.3892/mmr.2017.7779. [36] Liu Jiao, Cao Zhiwei. Protective Effect of Circular RNA(CircRNA)Ddx17 in Ovalbumin(OVA)-Induced Allergic Rhinitis(AR)Mice[J]. Med Sci Monit, 2020, 26: e919083. doi: 10.12659/MSM.919083. [37] 谢益,韩锋产.miRNAs与内耳发育和听觉毛细胞凋亡与再生的研究进展[J].山东大学耳鼻喉眼学报,2019,33(2):126-129. doi: 10.6040/j.issn.1673-3770.0.2018.268. XIE Yi, HAN Fengchan. Role of miRNAs in inner ear development and apoptosis or regeneration of auditory hair cells[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 126-129. doi:10.6040/j.issn.1673-3770.0.2018.268. [38] Li L, Zhang S, Jiang X, et al. MicroRNA-let-7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signaling 4 and activating Janus kinase 1/signal transducer and activator of transcription 3 pathway[J]. Exp Ther Med, 2018,15(4):3523-3529. doi: 10.3892/etm.2018.5827. [39] Wu G, Yang G, Zhang R, et al. Altered microRNA Expression Profiles of Extracellular Vesicles in Nasal Mucus From Patients With Allergic Rhinitis[J]. Allergy Asthma Immunol Res, 2015, 7(5): 449-457. doi: 10.4168/aair.2015.7.5.449. [40] Luo X, Hong H, Tang J, et al. Increased Expression of miR-146a in Children With Allergic Rhinitis After Allergen-Specific Immunotherapy[J]. Allergy Asthma Immunol Res, 2016, 8(2): 132-140. doi: 10.4168/aair.2016.8.2.132. [41] Chen L, Zhang S, Wu J,et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family[J]. Oncogene, 2017,36(32):4551-4561. doi: 10.1038/onc.2017.89. [42] Tost Jörg. A translational perspective on epigenetics in allergic diseases[J]. The Journal of allergy and clinical immunology, 2018, 142(3):715-726. doi: 10.1016/j.jaci.2018.07.009. [43] 张炜,曾昱菡,余先崧.慢性鼻窦炎手术前后ECP、EGF、IL-6的水平变化及临床意义[J].山东大学耳鼻喉眼学报,2018,32(3):63-67. doi: 10.6040 /j.issn.1673-3770.0.2017.547. ZHANG Wei, ZENG Yuhan, YU Xiansong. Changes in nasal secretion of ECP, EGF and IL-6 in patients with chronic sinusitis before and after endoscopic sinus surgery and their clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(3): 63-67. doi:10.6040/j.issn.1673-3770.0.2017.547. [44] Resende EP, Todo-Bom A, Loureiro C, et al. Asthma and rhinitis have different genetic profiles for IL13, IL17A and GSTP1 polymorphisms[J]. Rev Port Pneumol( 2006), 2017, 23(1): 10-16. doi: 10.1016/j.rppnen.2016.06.009. [45] Zhu P, Zhu X, Wu J, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3[J]. Nat Immunol, 2019, 20(2): 183-194. doi: 10.1038/s41590-018-0297-6. [46] Zhou Zhibin, Du Di, Chen Aimin, et al. Circular RNA expression profile of articular chondrocytes in an IL-1β-induced mouse model of osteoarthritis[J]. Gene, 2018. doi: 10.1016/j.gene.2017.12.020. [47] Piao Chun Hua, Song Chang Ho, Lee Eun Jung, et al. Saikosaponin A ameliorates nasal inflammation by suppressing IL-6/ROR-γt/STAT3/IL-17/NF-κB pathway in OVA-induced allergic rhinitis[J]. Chemico-biological interactions, 2020, 315: 108874. doi: 10.1016/j.cbi.2019.108874. [48] Monica Singh, Sarabjit Mastana, Surinderpal Singh, et al. Puneetpal Singh.Promoter polymorphisms in IL-6 gene influence pro-inflammatory cytokines for the risk of osteoarthritis [J]. Cytoki ne, 2020, 127: 154985. doi:10.1016/j.cyto.2020.154985. [49] Majcher Sandra, Ustianowski Przemysaw, Tarnowski Maciej, et al. IL-1β and IL-10 gene polymorphisms in women with gestational diabetes[J]. J Matern Fetal Neonatal Med, 2019: 1-6. doi: 10.1080/14767058.2019.1678141. [50] 李全生,魏庆宇. 变应性鼻炎临床实践指南:美国耳鼻咽喉头颈外科学会推荐[J]. 中国耳鼻咽喉头颈外科,2015,22(9):482-486. doi:10.16066/j.1672-7002.2015.09.016. [51] Restimulia L, Pawarti DR, Ekorini HM. The Relationship between Serum Vitamin D Levels with Allergic Rhinitis Incidence and Total Nasal Symptom Score in Allergic Rhinitis Patients[J]. Open Access Maced J Med Sci, 2018, 6(8): 1405-1409. doi: 10.3889/oamjms.2018.247. [52] Liu W, Zeng Q, Luo R. Correlation between Serum Osteopontin and miR-181a Levels in Allergic Rhinitis Children[J]. Mediators Inflamm, 2016: 9471215. doi: 10.1155/2016/9471215. [53] 邓玉琴,杨雅琪,陶泽璋,等.微小RNA单核苷酸多态性与中国南方汉族人群变应性鼻炎易感性的研究[J].山东大学耳鼻喉眼学报,2016,30(1):1-4.doi:10.6040/j.issn.1673-3770.0.2015.487. DENG Yuqin, YANG Yaqi, TAO Zezhang, et al. Study on single-nucleotide polymorphisms of microRNA and susceptibility to allergic rhinitis in Han population of Southern China[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(1): 1-4. doi:10.6040/j.issn.1673-3770.0.2015.487. [54] Jia M, Chu C, Wang M. Correlation of microRNA profiles with disease risk and severity of allergic rhinitis[J]. Int J Clin Exp Pathol, 2018,11: 1791-1802. PMID: 31938286. [55] Vidal AF, Sandoval GT, Magalhaes L, et al. Circular RNAs as a new field in gene regulation and their implications in translational research[J]. Epigenomics, 2016, 8: 551-562. doi: 10.2217/epi.16.3. [56] Zhang Y, Zhang Y, Li X, et al. Microarray analysis of circular RNA expression patterns in polarized macrophages[J].Int J Mol Med, 2017, 39(2): 373-379.doi: 10.3892/ijmm.2017.2852. [57] Bro(·overz)ek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma(ARIA)guidelines-2016 revision[A]. J Allergy Clin Immunol, 2017, 140(4): 950-958. doi: 10.1016/j.jaci.2017.03.050. [58] Tang H, Jiang H, Zheng J, et al. MicroRNA-106b regulates pro-allergic properties of dendritic cells and Th2 polarization by targeting early growth response-2 in vitro[J]. Int Immunopharmacol, 2015, 28: 866-874. doi: 10.1016/j.intimp.2015.03.043. [59] Teng Y, Zhang R, Liu C, et al. MiR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1[J]. Biochem Biophys Res Commun, 2015, 457: 58-64. doi: 10.1016/j.bbrc.2014.12.058. [60] Zhao CY, Wang W, Yao HC, et al. SOCS3 in upregulated and targeted by MiR30a-5p in allergic rhinitis[J]. Int Arch Allergy Immunol, 2018, 175: 209-219. doi: 10.1159/000486857. [61] Wang T, Chen D, Wang P, et al. MiR-375 prevents nasal mucosa cells from apoptosis and ameliorates allergic rhinitis via inhibiting JAK3/STAT3 pathway[J]. Biomed Pharmacother, 2018, 103: 621-627. doi: 10.1016/j.biopha.2018.04.050. [62] Deng Y, Yang Y, Wang S, et al. Intranasal administration of lentiviral miR-135a regulates mast cell and antigen-induced inflammation by targeting GATA3[J]. PLoS One, 2015, 10: e0139322. doi: 10.1371/journal.pone.0139322. [63] Xiao L, Jiang L, Hu Q, et al. MicroRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting NIrp3[J]. Cell Physiol Biochem, 2017, 42: 901-912. doi: 10.1159/000478645. [64] Liu H, Zhang A, Zhao N, et al. Role of miR-146a in enforcing effect of specific immunotherapy on allergic rhinitis[J]. Immunol Invest, 2016, 45: 1-10. doi: 10.3109/08820139.2015.1085390. [65] Hayat S, Darroudi M. Nanovaccine: a novel approach in immunization[J]. J Cell Physiol, 2019, 234:12530-12536. doi: 10.1002/jcp.28120. [66] Luo X, Han M, Liu J, et al. Epithelial cell-derived microRNA-146a generates interleukin-10 producing monocytes to inhibit nasal allergy[J]. Sci Rep, 2015, 5: 15937. doi: 10.1038/srep15937. [67] Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444: 132-136. doi: 10.1016/j.cca.2015.02.018. [68] Jiang XM, Li ZL, Li JL, et al. A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as[J]. Eur Rev Med Pharmacol Sci, 2018, 22: 365-371. doi: 10.26355/eurrev_201801_14182. [69] Zhang Y, Liang W, Zhang P, et al. Circular RNAs: emerging cancer biomarkers and targets[J]. J Exp Clin Cancer Res, 2017, 36: 152. doi: 10.1186/s13046-017-0624-z. [70] Jiang XM, Li ZL, Li JL, et al. A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as[J]. Eur Rev Med Pharmacol Sci, 2018, 22: 365-371. doi: 10.26355/eurrev_201801_14182. [71] Xu L, Zhang M, Zheng X, et al. The circular RNA ciRS-7(Cdr1as)acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2017, 143: 17-27. doi: 10.1007/s00432-016-2256-7. [72] Zhu Q, Lu G, Luo Z, et al. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/beta-catenin axis[J]. Biochem Biophys Res Commun, 2018, 497: 626-632. doi: 10.1016/j.bbrc.2018.02.119. [73] Krzysztof Specjalski,Ewa Jassem. MicroRNAs: Potential biomarkers and targets of therapy in allergic diseases?[J]. Arch Immunol Ther Exp(Warsz), 2019, 67(4): 213-223. doi: 10.1007/s00005-019-00547-4. [74] Li L, Zhang S, Jiang X, et al. MicroRNA-let-7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signalling 4 and activating Janus kinase 1- signal transducer and activator of transcription 3 pathway[J]. Exp Ther Med, 2018, 15: 3523-3529. doi: 10.3892/etm.2018.5827. [75] Zhu X, Wang X, Wang Y, et al. The regulatory network among CircHIPK3, LncGAS5, and miR-495 promotes Th2 differentiation in allergic rhinitis[J]. Cell Death Dis, 2020, 11(4): 216. doi:10.1038/s41419-020-2394-3. |
[1] | 倪璟滋,万文锦,程雷. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 110-115. |
[2] | 林一杭,李幼瑾. 肠道微生态在儿童变应性鼻炎中的研究现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 116-122. |
[3] | 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129. |
[4] | 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. |
[5] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
[6] | 龚霄阳,程雷. 新冠疫情期间基于门诊患者的变应性鼻炎患者比例构成分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 245-255. |
[7] | 鹿伟理,姜涛,李宪华. 多重致敏儿童变应性鼻炎患者sIgE特征分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 260-265. |
[8] | 黄开月,李雪情,韩国鑫,张勤修. 基于“肺脾”理论指导穴位埋线治疗变应性鼻炎的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 266-274. |
[9] | 朱正茹, 张小兵. 中药汤剂结合常规西药治疗变应性鼻炎疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 281-289. |
[10] | 王菲,刘钰莹,肖麒祎,丁健,高尚,毛薇. 住院医师精神心理因素与变应性鼻炎的相关性研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 28-31. |
[11] | 林小燕,李静,马志祺,李依琳,高馨怡,李勇. 益生菌治疗变应性鼻炎的临床疗效及抗变态反应作用Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 70-80. |
[12] | 杨晴,陆美萍,程雷. 苏皖地区变应性鼻炎患者气传变应原皮肤点刺试验和血清特异性IgE检测的一致性及相关性分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 40-46. |
[13] | 杨艳艳, 杨玉娟, 宋西成. 芳香烃受体抑制变应性鼻炎Th17免疫应答的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 109-113. |
[14] | 向浏岚,叶远航蒋璐云,刘洋. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122. |
[15] | 朱正茹张小兵. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128. |
|