山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (6): 113-117.doi: 10.6040/j.issn.1673-3770.0.2024.068
• 论著 • 上一篇
高琳,何金梅,杨明祎
GAO Lin, HE Jinmei, YANG Mingyi
摘要: 目的 探讨糖尿病视网膜病变(diabetic retinopathy, DR)患者血清应激诱导蛋白2(Sestrin2)和NADPH氧化酶2(NOX2)水平与眼底病变的相关性。 方法 对到我院眼科门诊就诊的139例糖尿病患者,根据患者的眼科临床诊断结果分为DR组和非DR组,根据DR患者病情分期将DR组分为增生型DR组和非增生型DR组,分析患者临床资料及入院时血清中Sestrin2和NOX2的表达水平。采用Pearson 分析眼底病变严重程度与血清Sestrin2和NOX2表达量的相关性,通过多因素Logistic回归模型分析患DR的影响因素。 结果 DR组血清中Sestrin2水平[(1.97±0.38)ng/mL]低于非DR组[(3.74±0.84)ng/mL],而NOX2水平[(11.38±1.59)ng/mL]高于非DR组[(6.75±1.69)ng/mL](P<0.05)。血清Sestrin2在非增生型DR组的表达量显著高于增生型DR组,且随着病情的加重而降低(P<0.05),NOX2在非增生型DR组表达量显著低于增生型DR组,且随着病情的加重而升高(P<0.05)。Logistic回归分析显示,高INS含量和高Sestrin2水平是DR的保护因素,血清中高空腹血糖(fasting plasma glucose, FPG)及高NOX2是DR的危险因素(P<0.05)。 结论 DR患者血清中Sestrin2呈现低水平,NOX2的表达水平则提高,且二者的变化水平与DR患者眼底病变关系密切。
中图分类号:
| [1] Lu HN, Yang JY, Li J, et al. MiR-190 ameliorates glucotoxicity-induced dysfunction and apoptosis of pancreatic β-cells by inhibiting NOX2-mediated reactive oxygen species production[J]. PeerJ, 2022, 10: e13849. doi:10.7717/peerj.13849 [2] Mendonca HR, Carpi-Santos R, da Costa Calaza K, et al. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: galectin-3 participation[J]. Neural Regen Res, 2020, 15(4): 625-635. doi:10.4103/1673-5374.266910 [3] Kowluru RA. Diabetic retinopathy and NADPH oxidase-2: a sweet slippery road[J]. Antioxidants(Basel), 2021, 10(5): 783. doi:10.3390/antiox10050783 [4] 边云, 白海龙, 孟晓峰, 等. 贞莲明目胶囊治疗糖尿病视网膜病变的网络药理学机制分析[J]. 实用临床医药杂志, 2023, 27(18): 75-82. doi:10.7619/jcmp.20232153 BIAN Yun, BAI Hailong, MENG Xiaofeng, et al. Analysis of network pharmacological mechanism of Zhenlian Mingmu Capsule in treatment of diabetic retinopathy[J]. Journal of Clinical Medicine in Practice, 2023, 27(18): 75-82. doi:10.7619/jcmp.20232153 [5] Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy[J]. Prog Retin Eye Res, 2021, 83: 100919. doi:10.1016/j.preteyeres.2020.100919 [6] Yang XL, Li DL. Tricin attenuates diabetic retinopathy by inhibiting oxidative stress and angiogenesis through regulating Sestrin2/Nrf2 signaling[J]. Hum Exp Toxicol, 2023, 42: 9603271231171642. doi:10.1177/09603271231171642 [7] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4): 292-344. doi:10.19538/j.nk2018040108 Chinese Diabetes Society. Guidelines for the prevention and control of type 2 diabetes in China(2017 edition)[J]. Chinese Journal of Practical Internal Medicine, 2018, 38(4): 292-344. doi:10.19538/j.nk2018040108 [8] 中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志, 2014, 50(11): 851-865. doi:10.3760/cma.j.issn.0412-4081.2014.11.014 [9] 王娇娇, 李苗, 宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99. doi:10.6040/j.issn.1673-3770.0.2021.203 WANG Jiaojiao, LI Miao, SONG Zongming. Progress in diabetic retinopathy mechanisms and cellular models[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99. doi:10.6040/j.issn.1673-3770.0.2021.203 [10] Takele MB, Boneya DJ, Alemu HA, et al. Retinopathy among adult diabetics and its predictors in northwest Ethiopia[J]. J Diabetes Res, 2022, 2022: 1362144. doi:10.1155/2022/1362144 [11] Su ZY, Liu W, Yang JK. Association between proliferative diabetic retinopathy and serum bile acid level in patients with type 2 diabetes mellitus[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(11): 2063-2067. doi:10.2174/1871530321666210112160724 [12] Korhonen A, Gucciardo E, Lehti K, et al. Proliferative diabetic retinopathy transcriptomes reveal angiogenesis, anti-angiogenic therapy escape mechanisms, fibrosis and lymphatic involvement[J]. Sci Rep, 2021, 11(1): 18810. doi:10.1038/s41598-021-97970-5 [13] Yang XL, Wu XL. The impact of sestrin2 on reactive oxygen species in diabetic retinopathy[J]. Cell Biochem Funct, 2024, 42(4): e4024. doi:10.1002/cbf.4024 [14] Jiang Y, Luo B. Histone deacetylase 3 inhibitor attenuates diabetic retinopathy in mice[J]. J Neurophysiol, 2023, 129(1): 177-183. doi:10.1152/jn.00477.2022 [15] Alka K, Mohammad G, Kowluru RA. Regulation of serine palmitoyl-transferase and Rac1-Nox2 signaling in diabetic retinopathy[J]. Sci Rep, 2022, 12(1): 16740. doi:10.1038/s41598-022-20243-2 [16] 刘谦, 周健, 武珅, 等. NOX2基因缺陷对rd1小鼠感光细胞凋亡的保护作用[J]. 眼科, 2022, 31(2): 140-145. doi:10.13281/j.cnki.issn.1004-4469.2022.02.012 LIU Qian, ZHOU Jian, WU Shen, et al. Protection of photoreceptor degeneration in NADPH oxidase 2 deficiency-rd1 mice[J]. Ophthalmology in China, 2022, 31(2): 140-145. doi:10.13281/j.cnki.issn.1004-4469.2022.02.012 |
| [1] | 柯冰冰,陈铭,王洪阳,李春燕,殷善开. CAMK4介导胆红素所致听觉中枢神经元氧化应激损伤[J]. 山东大学耳鼻喉眼学报, 2025, 39(3): 1-10. |
| [2] | 陈铭,柯冰冰,崔雅琦,吴翠萍,陈正侬,李春燕,殷善开. NAD+对顺铂所致毛细胞氧化应激损伤的拮抗作用及相关基因表达调控[J]. 山东大学耳鼻喉眼学报, 2025, 39(3): 11-18. |
| [3] | 张国明,魏文斌,林浩添,迟玮,张少冲,赵培泉,雷柏英,陈有信,王雨生,何明光,梁建宏,卢海,陆方,黄欣,梁小玲,赵欣予,吴桢泉,余震,崔凯璇,刘亚玲,项道满,陈长征,张自峰,林铎儒,于珊珊,孙悦,檀韬,陈燕先,彭婕,董力,程湧,朱雪梅,杨鹏,陈少滨. 人工智能技术辅助早产儿视网膜病变诊疗专家共识(2025)[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 1-5. |
| [4] | 杨淞月,张美霞. 单细胞RNA测序技术在视网膜中的研究进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 162-170. |
| [5] | 辛梦,纪芳,代春华,张靖,刘澍. 医用透明质酸钠与平衡盐溶液在微创玻璃体手术中对眼表保护的影响[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 58-65. |
| [6] | 沈嘉琪,李潇飒,毕燕龙,张敬法. 人工智能在DME筛查、诊断和预后中的应用[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 153-159. |
| [7] | 鲍莹,刘志高,姜鹏飞,崔文轩,郑晓霞,杨梦瑶,司明威,王玉,王红. 康柏西普治疗糖尿病合并CRVO-ME高反射点的临床观察[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 55-60. |
| [8] | 常威威,焦万珍,崔艳艳,赵杰,刘兆强,赵博军. 糖尿病性黄斑缺血的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 130-136. |
| [9] | 胡亚柔,赵欣予,吴桢泉,范梓欣,余震,刘亚玲,陈婷毅,曾键,张国明. 早产儿屈光状态与眼部生物特征的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 144-150. |
| [10] | 周静琳,李金香,曾琦. 577 nm阈值下微脉冲激光联合抗VEGF药物治疗难治性糖尿病性黄斑水肿的疗效观察[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 18-25. |
| [11] | 何静,雷春燕,张美霞. 糖化血红蛋白变异指数与糖尿病视网膜病变严重程度的相关性研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 34-40. |
| [12] | 李淑婷,赵慧,司明威,崔文轩,杨梦瑶,王红. 无植物性外伤史患者感染真菌性眼内炎1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 103-108. |
| [13] | 伦英俊,陈晨,高宏程,范清琳,邰仁清. TLR4/NF-κB通道在糖尿病视网膜病变中的作用[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 163-168. |
| [14] | 周颖东,张梦娴,王青玲,康浩然,郭向东. 氧化应激在老年性聋发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 72-78. |
| [15] | 张晓晗,魏丽,杨凯莉,陈海燕,李彦松,王平. 中医辨证论治前后CSC患者OCTA变化及其与视力的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 115-122. |
|
||