山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (3): 144-150.doi: 10.6040/j.issn.1673-3770.0.2023.402

• 综述 • 上一篇    

早产儿屈光状态与眼部生物特征的研究进展

胡亚柔1,赵欣予2,吴桢泉2,范梓欣2,余震2,刘亚玲2,陈婷毅2,曾键2,张国明2   

  1. 1.暨南大学 第二临床医学院, 广东 深圳 518040;
    2.深圳市眼科医院/暨南大学附属深圳眼科医院/深圳市眼病防治研究所, 广东 深圳 518040
  • 发布日期:2024-06-04
  • 通讯作者: 张国明. E-mail:zhangguoming@sz-eyes.com

Research progress on refractive status and ocular biometrics in preterm births

HU Yarou1, ZHAO Xinyu2, WU Zhenquan2, FAN Zixin2, YU Zhen2, LIU Yaling2, CHEN Tingyi2, ZENG Jian2, ZHANG Guoming2   

  1. 1. The Second Clinical Medical College of Jinan University, Shenzhen 518040, Guangdong, China2. Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China
  • Published:2024-06-04

摘要: 早产儿通常比足月儿具有更高的屈光不正发生率,这种情况尤其多见于伴发早产儿视网膜病变(retinopathy of prematurity, ROP)的早产儿。屈光状态与眼部生物学形态密切相关,早产儿角膜、前房和晶状体等眼部结构的形态会发生变化,且部分眼部生物特征改变被认为与其屈光状态密切相关。随着现代围产期医疗水平的提升,早产儿存活率升高,早产及ROP所致的屈光不正人群数量也随之增加,其中近视及高度近视的视力损害和远期不良并发症最为严重。因此关注这一群体的长期屈光预后以及保障其远期生活和学习质量则显得尤为重要,本文就近年来关于早产儿屈光状态和眼部生物特征的研究发现进行综述。

关键词: 早产儿, 早产儿视网膜病变, 足月儿, 屈光状态, 近视, 生物特征, 角膜曲率

Abstract: People who were born prematurely, especially those with retinopathy of prematurity(ROP), usually have a higher incidence of refractive errors than those who were born at full term. The refractive status is closely related to the ocular morphology. The morphology of the ocular structures, such as the cornea, anterior chamber, and lens, changes in preterm infants. Additionally, some changes in ocular biometrics were considered to be related to the refractive status. With improvements in modern medical technology, the survival rate of preterm infants has increased, resulting in an increase in the number of people with refractive errors caused by preterm birth and ROP. Among these, the visual impairment and long-term complications caused by myopia are the most serious. Therefore, focusing on the long-term refractive prognosis and ensuring a lengthy quality of both life and learning are urgently required. In this article, we review recent research findings on refractive status and ocular biometrics in preterm births.

Key words: Preterm birth, Retinopathy of prematurity, Full-term birth, Refractive state, Myopia, Biological characteristic, Corneal curvature

中图分类号: 

  • R774.1
[1] Holmström GE, Källen K, Hellström A, et al. Ophthalmologic outcome at 30 months' corrected age of a prospective Swedish cohort of children born before 27 weeks of gestation: the extremely preterm infants in Sweden study[J]. JAMA Ophthalmol, 2014, 132(2): 182-189. doi:10.1001/jamaophthalmol.2013.5812
[2] Park SH, Ma DJ, Choi DG. Long-term visual outcomes in children with regressed retinopathy of prematurity[J]. Sci Rep, 2023, 13(1): 4066. doi:10.1038/s41598-023-31234-2
[3] Pétursdóttir D, Holmström G, Larsson E. Refraction and its development in young adults born prematurely and screened for retinopathy of prematurity[J]. Acta Ophthalmol, 2022, 100(2): 189-195. doi:10.1111/aos.14766
[4] Zhu XH, Zhao RL, Wang Y, et al. Refractive state and optical compositions of preterm children with and without retinopathy of prematurity in the first 6 years of life[J]. Medicine, 2017, 96(45): e8565. doi:10.1097/MD.0000000000008565
[5] Dikopf MS, Machen LA, Hallak JA, et al. Zone of retinal vascularization and refractive error in premature eyes with and without spontaneously regressed retinopathy of prematurity[J]. J AAPOS, 2019, 23(4): 211.e1-211211.e6. doi:10.1016/j.jaapos.2019.03.006
[6] Chen YC, Chen SN. Foveal microvasculature, refractive errors, optical biometry and their correlations in school-aged children with retinopathy of prematurity after intravitreal antivascular endothelial growth factors or laser photocoagulation[J]. Br J Ophthalmol, 2020, 104(5): 691-696. doi:10.1136/bjophthalmol-2019-314610
[7] Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis[J]. Lancet Glob Health, 2019, 7(1): e37-e46. doi:10.1016/S2214-109X(18)30451-0
[8] Hellström A, Smith LEH, Dammann O. Retinopathy of prematurity[J]. Lancet, 2013, 382(9902): 1445-1457. doi:10.1016/S0140-6736(13)60178-6
[9] Chen Y, Xun D, Wang YC, et al. Incidence and risk factors of retinopathy of prematurity in two neonatal intensive care units in North and South China[J]. Chin Med J, 2015, 128(7): 914-918. doi:10.4103/0366-6999.154294
[10] Li L, Gao YL, Chen W, et al. Screening for retinopathy of prematurity in North China[J]. BMC Ophthalmol, 2022, 22(1): 251. doi:10.1186/s12886-022-02470-3
[11] Çmez A, Çelemler P, Özmen MC, et al. Retinopathy of prematurity incidence and treatment modalities in moderate and late preterm infants: a study from two tertiary centers[J]. Can J Ophthalmol, 2022, 57(3): 195-200. doi:10.1016/j.jcjo.2021.03.014
[12] Bas AY, Demirel N, Koc E, et al. Incidence, risk factors and severity of retinopathy of prematurity in Turkey(TR-ROP study): a prospective, multicentre study in 69 neonatal intensive care units[J]. Br J Ophthalmol, 2018, 102(12): 1711-1716. doi:10.1136/bjophthalmol-2017-311789
[13] Dani C, Coviello C, Panin F, et al. Incidence and risk factors of retinopathy of prematurity in an Italian cohort of preterm infants[J]. Ital J Pediatr, 2021, 47(1): 64. doi:10.1186/s13052-021-01011-w
[14] Darlow BA, Hutchinson JL, Henderson-Smart DJ, et al. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network[J]. Pediatrics, 2005, 115(4): 990-996. doi:10.1542/peds.2004-1309
[15] Isaza G, Donaldson L, Chaudhary V. Increased incidence of retinopathy of prematurity and evolving treatment modalities at a Canadian tertiary centre[J]. Can J Ophthalmol, 2019, 54(2): 269-274. doi:10.1016/j.jcjo.2018.05.005
[16] Morgan IG, Ohno-Matsui K, Saw SM. Myopia[J]. Lancet, 2012, 379(9827): 1739-1748. doi:10.1016/S0140-6736(12)60272-4
[17] Fledelius HC. Ophthalmic changes from age of 10 to 18 years. A longitudinal study of sequels to low birth weight. III. Ultrasound oculometry and keratometry of anterior eye segment[J]. Acta Ophthalmol, 1982, 60(3): 393-402. doi:10.1111/j.1755-3768.1982.tb03030.x
[18] Simkin SK, Kersten HM, Misra SL, et al. Long-term visual outcomes of children screened for retinopathy of prematurity with telemedicine in New Zealand[J]. Clin Exp Optom, 2023, 106(4): 409-414. doi:10.1080/08164622.2022.2053329
[19] Li JO, Liu HR, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective[J]. Prog Retin Eye Res, 2021, 82: 100900. doi:10.1016/j.preteyeres.2020.100900
[20] Fielder AR, Levene MI, Russell-Eggitt IM, et al. Temperature: a factor in ocular development?[J]. Dev Med Child Neurol, 1986, 28(3): 279-284. doi:10.1111/j.1469-8749.1986.tb03873.x
[21] Fielder AR, Quinn GE. Myopia of prematurity: nature, nurture, or disease?[J]. Br J Ophthalmol, 1997, 81(1): 2-3. doi:10.1136/bjo.81.1.2
[22] Beri S, Malhotra M, Dhawan A, et al. A neuroectodermal hypothesis of the cause and relationship of myopia in retinopathy of prematurity[J]. J Pediatr Ophthalmol Strabismus, 2009, 46(3): 146-150. doi:10.3928/01913913-20090505-05
[23] Hellström A, Jacobson L, Al-Hawasi A, et al. Retrospective evaluation of ophthalmological and neurological outcomes for infants born before 24 weeks gestational age in a Swedish cohort[J]. BMJ Open, 2022, 12(8): e055567. doi:10.1136/bmjopen-2021-055567
[24] FießA, Fauer A, Mildenberger E, et al. Refractive error, accommodation and lens opacification in adults born preterm and full-term: results from the Gutenberg Prematurity Eye Study(GPES)[J]. Acta Ophthalmol, 2022, 100(7): e1439-e1450. doi:10.1111/aos.15116
[25] 冉宏运, 蒋可可, 张杰. 早产儿视网膜病变患儿屈光影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 118-124. doi: 10.6040/j.issn.1673-3770.0.2020.418 RAN Hongyun, JIANG Keke, ZHANG Jie. Analysis of underlying factors of refractive errors in infants with retinopathy of prematurity[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 118-124. doi:10.6040/j.issn.1673-3770.0.2020.418
[26] Fledelius HC. Ophthalmic changes from age of 10 to 18 years. A longitudinal study of sequels to low birth weight. I. Refraction[J]. Acta Ophthalmol, 1980, 58(6): 889-898. doi:10.1111/j.1755-3768.1980.tb08314.x
[27] Fledelius HC. Pre-term delivery and subsequent ocular development. A 7-10 year follow-up of children screened 1982-84 for ROP. 4)Oculometric - and other metric considerations[J]. Acta Ophthalmol Scand, 1996, 74(3): 301-305. doi:10.1111/j.1600-0420.1996.tb00097.x
[28] FießA, Kölb-Keerl R, Knuf M, et al. Axial length and anterior segment alterations in former preterm infants and full-term neonates analyzed with scheimpflug imaging[J]. Cornea, 2017, 36(7): 821-827. doi:10.1097/ICO.0000000000001186
[29] Pétursdóttir D, Holmström G, Larsson E. Visual function is reduced in young adults formerly born prematurely: a population-based study[J]. Br J Ophthalmol, 2020, 104(4): 541-546. doi:10.1136/bjophthalmol-2019-314429
[30] Darlow BA, Elder MJ, Kimber B, et al. Vision in former very low birthweight young adults with and without retinopathy of prematurity compared with term born controls: the NZ 1986 VLBW follow-up study[J]. Br J Ophthalmol, 2018, 102(8): 1041-1046. doi:10.1136/bjophthalmol-2017-311345
[31] Wang Y, Pi LH, Zhao RL, et al. Refractive status and optical components of premature babies with or without retinopathy of prematurity at 7 years old[J]. Transl Pediatr, 2020, 9(2): 108-116. doi:10.21037/tp.2020.03.01
[32] Xie XX, Wang Y, Zhao RL, et al. Refractive status and optical components in premature infants with and without retinopathy of prematurity: a 4- to 5-year cohort study[J]. Front Pediatr, 2022, 10: 922303. doi:10.3389/fped.2022.922303
[33] Kumarakulasinghe ALB, Din NM, Mohd Noh UK, et al. Evaluation of ocular biometric and optical coherence tomography parameters in preterm children without retinopathy of prematurity[J]. Transl Vis Sci Technol, 2022, 11(3): 8. doi:10.1167/tvst.11.3.8
[34] Fieß A, Christian L, Kölb-Keerl R, et al. Peripapillary choroidal thickness in former preterm and full-term infants aged from 4 to 10 years[J]. Invest Ophthalmol Vis Sci, 2016, 57(15): 6548-6553. doi:10.1167/iovs.16-20128
[35] Fieß A, Christian L, Janz J, et al. Functional analysis and associated factors of the peripapillary retinal nerve fibre layer in former preterm and full-term infants[J]. Br J Ophthalmol, 2017, 101(10): 1405-1411. doi:10.1136/bjophthalmol-2016-309622
[36] Fieß A, Janz J, Schuster AK, et al. Macular morphology in former preterm and full-term infants aged 4 to 10years[J]. Albrecht Von Graefes Arch Fur Klin Und Exp Ophthalmol, 2017, 255(7): 1433-1442. doi:10.1007/s00417-017-3662-5
[37] Fieß A, Berger LA, Riedl JC, et al. The role of preterm birth, retinopathy of prematurity and perinatal factors on corneal aberrations in adulthood: results from the Gutenberg prematurity eye study[J]. Ophthalmic Physiol Opt, 2022, 42(6): 1379-1389. doi:10.1111/opo.13038
[38] Fieß A, Nauen H, Mildenberger E, et al. Ocular geometry in adults born extremely, very and moderately preterm with and without retinopathy of prematurity: results from the Gutenberg Prematurity Eye Study[J]. Br J Ophthalmol, 2023, 107(8): 1125-1131. doi:10.1136/bjophthalmol-2021-320907
[39] Shah PS, Knowledge Synthesis Group on determinants of preterm/low birthweight births. Paternal factors and low birthweight, preterm, and small for gestational age births: a systematic review[J]. Am J Obstet Gynecol, 2010, 202(2): 103-123. doi:10.1016/j.ajog.2009.08.026
[40] Fieß A, Nickels S, Schulz A, et al. The relationship of ocular geometry with refractive error in normal and low birth weight adults[J]. J Optom, 2021, 14(1): 50-57. doi:10.1016/j.optom.2020.08.004
[41] Fieß A, Schuster AK, Nickels S, et al. Association of low birth weight with altered corneal geometry and axial length in adulthood in the German Gutenberg health study[J]. JAMA Ophthalmol, 2019, 137(5): 507-514. doi:10.1001/jamaophthalmol.2018.7121
[42] Fieß A, Schuster AK, Pfeiffer N, et al. Association of birth weight with corneal power in early adolescence: results from the National Health and Nutrition Examination Survey(NHANES)1999-2008[J]. PLoS One, 2017, 12(10): e0186723. doi:10.1371/journal.pone.0186723
[43] Fieß A, Urschitz MS, Nagler M, et al. Association of birth weight with corneal aberrations in adulthood- Results from a population-based study[J]. J Optom, 2023, 16(1): 42-52. doi:10.1016/j.optom.2021.06.004
[44] Fieß A, Nickels S, Urschitz MS, et al. Association of birth weight with peripapillary retinal nerve fiber layer thickness in adulthood-results from a population-based study[J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 4. doi:10.1167/iovs.61.8.4
[45] Fieß A, Urschitz MS, Marx-Groß S, et al. Association of birth weight with central and peripheral corneal thickness in adulthood-results from the population-based German Gutenberg health study[J]. Children, 2021, 8(11): 1006. doi:10.3390/children8111006
[46] Fieß A, Wagner FM, Urschitz MS, et al. Association of birth weight with foveolar thickness in adulthood: results from a population-based study[J]. Invest Ophthalmol Vis Sci, 2021, 62(14): 9. doi:10.1167/iovs.62.14.9
[47] Fieß A, Schuster AK, Nickels S, et al. Association of low birth weight with myopic refractive error and lower visual acuity in adulthood: results from the population-based Gutenberg Health Study(GHS)[J]. Br J Ophthalmol, 2019, 103(1): 99-105. doi:10.1136/bjophthalmol-2017-311774
[48] Pétursdóttir D, Holmström G, Larsson E. Strabismus, stereoacuity, accommodation and convergence in young adults born premature and screened for retinopathy of prematurity[J]. Acta Ophthalmol, 2022, 100(3): e791-e797. doi:10.1111/aos.14987
[49] Fan YY, Huang YS, Huang CY, et al. Neurodevelopmental outcomes after intravitreal bevacizumab therapy for retinopathy of prematurity: a prospective case-control study[J]. Ophthalmology, 2019, 126(11): 1567-1577. doi:10.1016/j.ophtha.2019.03.048
[50] Isaac M, Mireskandari K, Fallaha N, et al. Long-term outcomes of type 1 retinopathy of prematurity following monotherapy with bevacizumab: a Canadian experience[J]. Can J Ophthalmol, 2023, 58(6): 553-558. doi:10.1016/j.jcjo.2022.07.001
[51] Marlow N, Stahl A, Lepore D, et al. 2-year outcomes of ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity(RAINBOW extension study): prospective follow-up of an open label, randomised controlled trial[J]. Lancet Child Adolesc Health, 2021, 5(10): 698-707. doi:10.1016/S2352-4642(21)00195-4
[52] 郭宝, 张德勇. 康柏西普联合激光治疗急进性早产儿视网膜病变[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 92-97. doi:10.6040/j.issn.1673-3770.0.2018.272 GUO Bao, ZHANG Deyong. Clinical study of compaq combined with laser in the treatment of retinopathy of prematurity[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 92-97. doi:10.6040/j.issn.1673-3770.0.2018.272
[53] Gundlach BS, Kokhanov A, Altendahl M, et al. Real-world visual outcomes of laser and anti-VEGF treatments for retinopathy of prematurity[J]. Am J Ophthalmol, 2022, 238: 86-96. doi:10.1016/j.ajo.2021.11.015
[54] Marlow N, Stahl A, Lepore D, et al. 2-year outcomes of ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity(RAINBOW extension study): prospective follow-up of an open label, randomised controlled trial[J]. Lancet Child Adolesc Health, 2021, 5(10): 698-707. doi:10.1016/S2352-4642(21)00195-4
[55] Wiecek E, Akula JD, Vanderveen DK, et al. Longitudinal change of refractive error in retinopathy of prematurity treated with intravitreal bevacizumab or laser photocoagulation[J]. Am J Ophthalmol, 2022, 240: 252-259. doi:10.1016/j.ajo.2022.03.020
[56] Cengiz A, Kalayci M, Suren E, et al. Effect of macular edema in the premature period on refraction in infants screened and treated for retinopathy of prematurity[J]. Photodiagnosis Photodyn Ther, 2021, 33: 102133. doi:10.1016/j.pdpdt.2020.102133
[57] Chou YB, Wang AG, Yang HY, et al. Refractive status, biometric components, and functional outcomes of patients with threshold retinopathy of prematurity: systemic review and a 17-year longitudinal study[J]. Albrecht Von Graefes Arch Fur Klin Und Exp Ophthalmol, 2022, 260(12): 3809-3816. doi:10.1007/s00417-022-05730-6
[58] He XG, Sankaridurg P, Xiong SY, et al. Prevalence of myopia and high myopia, and the association with education: Shanghai Child and Adolescent Large-scale Eye Study(SCALE): a cross-sectional study[J]. BMJ Open, 2021, 11(12): e048450. doi:10.1136/bmjopen-2020-048450
[59] Li Y, Xing Y, Jia CL, et al. Beijing Pinggu childhood eye study: the baseline refractive characteristics in 6- to 12-year-old Chinese primary school students[J]. Front Public Health, 2022, 10: 890261. doi:10.3389/fpubh.2022.890261
[60] Mao JB, Lao JM, Liu CY, et al. Factors that influence refractive changes in the first year of myopia development in premature infants[J]. J Ophthalmol, 2019, 2019: 7683749. doi:10.1155/2019/7683749
[61] Kaur S, Dogra M, Sukhija J, et al. Preterm refraction and ocular biometry in children with and without retinopathy of prematurity in the first year of life[J]. J AAPOS, 2021, 25(5): 271.e1-271271.e6. doi:10.1016/j.jaapos.2021.05.012
[62] Chen PY, Kang EY, Chen KJ, et al. Foveal hypoplasia and characteristics of optical components in patients with familial exudative vitreoretinopathy and retinopathy of prematurity[J]. Sci Rep, 2022, 12(1): 7694. doi:10.1038/s41598-022-11455-7
[63] Young-Zvandasara T, Popiela M, Preston H, et al. Is the severity of refractive error dependent on the quantity and extent of retinal laser ablation for retinopathy of prematurity?[J]. Eye, 2020, 34(4): 740-745. doi:10.1038/s41433-019-0605-x
[64] Kardaras D, Papageorgiou E, Gaitana K, et al. The association between retinopathy of prematurity and ocular growth[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 98-106. doi:10.1167/iovs.18-24776
[65] Tolia VN, Ahmad KA, Jacob J, et al. Two-year outcomes of infants with stage 2 or higher retinopathy of prematurity: results from a large multicenter registry[J]. Am J Perinatol, 2020, 37(2): 196-203. doi:10.1055/s-0039-1694983
[66] Chapron T, Pierrat V, Caputo G, et al. Ophthalmological impairments at five and a half years after preterm birth: EPIPAGE-2 cohort study[J]. J Clin Med, 2022, 11(8): 2139. doi:10.3390/jcm11082139
[67] Riedl JC, Schuster AK, Musayeva A, et al. Effects of superficial keratectomy in peripheral hypertrophic subepithelial corneal opacification on front and back corneal astigmatism[J]. Curr Eye Res, 2021, 46(3): 284-289. doi:10.1080/02713683.2020.1798466
[68] Fieß A, Kölb-Keerl R, Elflein HM, et al. Evaluation of ophthalmic follow-up care of former pre-term and full-term infants aged from 4 to 10 years in Germany-results of the Wiesbaden prematurity study(WPS)[J]. Klin Monbl Augenheilkd, 2019, 236(10): 1174-1181. doi:10.1055/s-0043-118852
[69] Lindqvist S, Vik T, Indredavik MS, et al. Visual acuity, contrast sensitivity, peripheral vision and refraction in low birthweight teenagers[J]. Acta Ophthalmol Scand, 2007, 85(2): 157-164. doi:10.1111/j.1600-0420.2006.00808.x
[1] 李飏,刘鸫,曹文捷. 红光治疗对近视儿童等效球镜度、眼轴长度及脉络膜厚度影响的Meta分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 74-81.
[2] 卢松,夏逸帆,李子晔,魏菁. 无视网膜脱离的儿童Stickler综合征1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 97-101.
[3] 李洋,马萍,张晗. 不同术式对青光眼术后角膜散光的影响[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 137-143.
[4] 吴丽丽,曲毅. OCTA在病理性近视脉络膜新生血管应用及其在人工智能的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 144-149.
[5] 买尔哈巴·玉素甫,克里木江·阿不拉,丁琳,秦艳莉,陈雪艺. 伴发于后巩膜葡萄肿的高度近视性白内障眼底病变相关研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 107-114.
[6] 尤冉,郭笑霄,王薇,陈曦,王艳玲. 高度近视患者黄斑区视网膜劈裂分型与脉络膜特征分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 83-87.
[7] 杜曰山一,王鲜,张国明. 人工智能辅助早产儿视网膜病变诊疗新进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 157-162.
[8] 孟博,王康,罗丽华,王艳玲,李爽. 基于WOS数据库的高度近视黄斑裂孔性视网膜脱离研究特征及趋势分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 84-90.
[9] 熊翩翩,王佳琳,孙姣,周卓华,王艳玲. 高度近视豹纹状眼底视网膜脉络膜血流改变及相关性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 114-121.
[10] 赵泓霄,张晗. 光学放大效应对神经节细胞复合体测量的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 105-109.
[11] 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105.
[12] 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71.
[13] 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107.
[14] 李莹. 重视角膜屈光手术操作规范及并发症防治[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 1-6.
[15] 张颖,雷玉琳,马志兴,杨星花,张静,侯杰. SMILE联合快速角膜交联术后角膜光密度的早期临床观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 52-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!