山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (3): 26-31.doi: 10.6040/j.issn.1673-3770.1.2020.029
青晓艳1,徐义全2综述李超3审校
QING Xiaoyan1,XU Yiquan2Overview,LI Chao3Guidance
摘要: 甲状腺未分化癌(ATC)是一种罕见的侵袭型甲状腺恶性肿瘤,进展迅速、预后差,目前缺乏疗效显著的治疗方法和早期诊断方案。有学者研究显示,ATC预后不良是由于肿瘤早期突变以及肿瘤侵袭性生长,因此针对ATC发病机制的驱动突变及靶向药物的研究成为新方向。在ATC中涉及与肿瘤进展相关的不同分子途径,并且有学者探讨实施作用于这些分子途径的新疗法,以改善患者生活质量。对ATC分子结构特征的研究成果,为新的靶向治疗带来希望,新的分子机制将有助于发现更多潜在的治疗靶点,综述近年来ATC的分子机制研究概况。
中图分类号:
[1] 宋晓宇, 宋西成. 缺氧诱导因子-1α在甲状腺癌中的调节机制[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 136-138, 148. doi:10.6040/j.issn.1673-3770.0.2018.317. SONG Xiaoyu, SONG Xicheng. Research progress on the regulation of HIF-1α expression in thyroid carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 136-138, 148. doi:10.6040/j.issn.1673-3770.0.2018.317. [2] 中华人民共和国国家卫生健康委员会. 甲状腺癌诊疗规范(2018年版)[J]. 中华普通外科学文献(电子版), 2019, 13(1): 1-15. doi:10.3877/cma.j.issn.1674-0793.2019.01.001. [3] Zheng JX, Cheng X, Xu SC, et al. Diallyl trisulfide induces G2/M cell-cycle arrest and apoptosis in anaplastic thyroid carcinoma 8505C cells[J]. Food Funct, 2019, 10(11): 7253-7261. doi:10.1039/c9fo00646j. [4] Araque KA, Gubbi S, Klubo-Gwiezdzinska J. Updates on the management of thyroid cancer[J]. Horm EtMetab, 2020,10. doi:10.1055/a-1089-7870. [5] Hugen N, Sloot YJE, Netea-Maier RT, et al. Divergent metastatic patterns between subtypes of thyroid carcinoma results from the nationwide Dutch pathology registry[J]. J Clin Endocrinol Metab, 2020, 105(3): dgz078. doi:10.1210/clinem/dgz078. [6] Jiao C, Li L, Zhang P, et al. REGγ ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-β pathway[J]. Cell Death Differ, 2020, 27(2): 497-508. doi:10.1038/s41418-019-0367-9. [7] Ma YH, Cang SD, Li GQ, et al. Integrated analysis of transcriptome data revealed MMP3 and MMP13 as critical genes in anaplastic thyroid cancer progression[J]. J Cell Physiol, 2019, 234(12): 22260-22271. doi:10.1002/jcp.28793. [8] Kohler H, Latteyer S, HönesGS, et al. Increased anaplastic lymphoma kinase activity induces a poorly differentiated thyroid carcinoma in mice[J]. Thyroid, 2019, 29(10): 1438-1446. doi:10.1089/thy.2018.0526. [9] Wang Q, Sui GQ, Wu XL, et al. A sequential targeting nanoplatform for anaplastic thyroid carcinoma theranostics[J]. Acta Biomater, 2020, 102: 367-383. doi:10.1016/j.actbio.2019.11.043. [10] Weber F, Junger H, Werner JM, et al. Increased cytoplasmatic expression of cancer immune surveillance receptor CD1d in anaplastic thyroid carcinomas[J]. Cancer Med, 2019, 8(16): 7065-7073. doi:10.1002/cam4.2573. [11] Schürch CM, Roelli MA, Forster S, et al. Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy[J]. Thyroid, 2019, 29(7): 979-992. doi:10.1089/thy.2018.0555. [12] Ferrari SM, Elia G, Ragusa F, et al. Novel treatments for anaplastic thyroid carcinoma[J]. Gland Surg, 2020, 9(Suppl 1): S28-S42. doi:10.21037/gs.2019.10.18. [13] Hao Z, Wang P. Lenvatinib in Management of Solid Tumors[J]. Oncologist,2020,25(2):e302-e310. doi: 10.1634/theoncologist.2019-0407. [14] Stenman A, Hellgren LS, Jatta K, et al. Metastatic anaplastic thyroid carcinoma in complete remission: morphological, molecular, and clinical work-up of a rare case[J]. Endocr Pathol, 2020, 31(1): 77-83. doi:10.1007/s12022-020-09606-5. [15] Paulsson JO, Backman S, Wang N, et al. Whole-genome sequencing of synchronous thyroid carcinomas identifies aberrant DNA repair in thyroid cancer dedifferentiation[J]. J Pathol, 2020, 250(2): 183-194. doi:10.1002/path.5359. [16] Calabrese G, Dolcimascolo A, Caruso G, et al. MiR-19a is involved in progression and malignancy of anaplastic thyroid cancer cells[J]. Onco Targets Ther, 2019, 12: 9571-9583. doi:10.2147/OTT.S221733. [17] Pellecchia S, Sepe R, Decaussin-Petrucci M, et al. The long non-coding RNA Prader willi/angelman region RNA5(PAR5)is downregulated in anaplastic thyroid carcinomas where it Acts as a tumor suppressor by reducing EZH2 activity[J]. Cancers(Basel), 2020, 12(1): E235. doi:10.3390/cancers12010235. [18] Credendino SC, Bellone ML, Lewin N, et al. A Cernacircuitry involving the long noncoding RNA Klhl14-AS, Pax8, and Bcl2 drives thyroid carcinogenesis[J]. Cancer Res, 2019, 79(22): 5746-5757. doi:10.1158/0008-5472.CAN-19-0039. [19] Wächter S, Vorländer C, Schabram J, et al. Anaplastic thyroid carcinoma: changing trends of treatment strategies and associated overall survival[J]. Eur Arch Otorhinolaryngol, 2020, 277(5): 1507-1514. doi:10.1007/s00405-020-05853-8. [20] Nikitski AV, Rominski SL, Condello V, et al. Mouse model of thyroid cancer progression and dedifferentiation driven by STRN-ALK expression and loss of p53: evidence for the existence of two types of poorly differentiated carcinoma[J]. Thyroid, 2019, 29(10): 1425-1437. doi:10.1089/thy.2019.0284. [21] Lin B, Ma HQ, Ma MG, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis[J]. Am J Transl Res, 2019, 11(9): 5888-5896. [22] Yan P, Su ZJ, Zhang ZH, et al. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR?9?5p and regulating SPAG9 expression[J]. Int J Oncol, 2019, 55(5): 988-1002. doi:10.3892/ijo.2019.4868. [23] Revilla G, Pons MP, Baila-Rueda L, et al. Cholesterol and 27-hydroxycholesterol promote thyroid carcinoma aggressiveness[J]. Sci Rep, 2019, 9(1): 10260. doi:10.1038/s41598-019-46727-2. [24] Zhong ZM, Chen X, Qi X, et al. Adaptor protein LNK promotes anaplastic thyroid carcinoma cell growth via 14-3-3 ε/γ binding[J]. Cancer Cell Int, 2020, 20: 11. doi:10.1186/s12935-019-1090-9. [25] Pereira M, Williams VL, Hallanger Johnson J, et al. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations[J]. Thyroid, 2020,3. doi:10.1089/thy.2019.0415. [26] Minna E, Brich S, Todoerti K, et al. Cancer associated fibroblasts and senescent thyroid cells in the invasive front of thyroid carcinoma[J]. Cancers(Basel), 2020, 12(1): E112. doi:10.3390/cancers12010112. [27] Haddad RI, Nasr C, Bischoff L, et al. NCCN guidelines insights: thyroid carcinoma, version 2.2018[J]. J Natl Compr Canc Netw, 2018, 16(12): 1429-1440. doi:10.6004/jnccn.2018.0089. [28] Saini S, Tulla K, Maker AV, et al. Therapeutic advances in anaplastic thyroid cancer: a current perspective[J]. Mol Cancer, 2018, 17(1): 154. doi:10.1186/s12943-018-0903-0. [29] Mirian C, Grnhj C, Jensen DH, et al. Trends in thyroid cancer: Retrospective analysis of incidence and survival in Denmark 1980-2014[J]. Cancer Epidemiol, 2018, 55: 81-87. doi:10.1016/j.canep.2018.05.009. [30] Gunda V, Gigliotti B, Ndishabandi D, et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer[J]. Br J Cancer, 2018, 119(10): 1223-1232. doi:10.1038/s41416-018-0296-2. [31] Ljubas J, Ovesen T, Rusan M. A systematic review of phase II targeted therapy clinical trials in anaplastic thyroid cancer[J]. Cancers(Basel), 2019, 11(7): E943. doi:10.3390/cancers11070943. |
[1] | 张艳红, 李娟娟, 曾宪海, 缑灵山, 王朝霞, 魏建芳, 马芳, 邱书奇. 耳聋基因panel在耳聋基因诊断中的临床应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 27-34. |
[2] | 王媚 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128. |
[3] | 刘厚军,张倩,程友,薛飞,许莉,吴明海. 慢性鼻窦炎伴双侧鼻息肉的发病与RANTES基因多态性的关系分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 165-170. |
[4] | 李琳,高正文,崔楠,孙健平,黄贤明,崔静. 儿童慢性鼻窦炎基因表达谱的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 171-180. |
[5] | 齐雯雯,陈鲁秋,贾涛,陈雪梅,张杰,张皓,金鹏,张虎. 复发性喉乳头状瘤中潜在生物学标志物的筛选及生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 75-84. |
[6] | 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130. |
[7] | 董诗坤,沈宇杰,张立庆,周涵,张佳程,董伟达. 鉴定头颈部鳞癌中异常甲基化的差异表达基因及其通路[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 82-91. |
[8] | 于克娜,孙凯月,张杰,金鹏. 西妥昔单抗治疗头颈部鳞状细胞癌差异表达基因的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 117-124. |
[9] | 潘新良. 加强甲状腺结节及恶性肿瘤的规范治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 1-12. |
[10] | 徐丽娜,高艳慧,何双八. 南京地区耳聋患者常见耳聋基因突变的分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 45-48. |
[11] | 申宇鹏,宋琦,李晓明. 喉癌前病变的病因、分子机制和处理策略[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 25-30. |
[12] | 潘晓菲,王军,肖洋,马丽晶. LncRNA CTB-147C22.8对复发性呼吸道乳头状瘤细胞侵袭的影响[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 66-70. |
[13] | 钱方舟,黄啸博,魏钦俊,陈智斌. 致聋基因 EYA4 在斑马鱼胚胎发育中的时空表达特征分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 49-55. |
[14] | 田慧琴,吴中飞,陆莹,程雷. GC和CYP27B1基因多态性与汉族人群尘螨致敏的持续性变应性鼻炎的关联研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 71-78. |
[15] | 陆美萍,程雷. 变应性鼻炎的遗传学研究现状[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 36-41. |
|