山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (2): 136-140.doi: 10.6040/j.issn.1673-3770.0.2020.285
张旭平1,2,刘雪霞3综述张华2审校
ZHANG Xuping1,2, LIU Xuexia3Overview,ZHANG Hua2Guidance
摘要: 外泌体是晚期内体起源的一种具有脂质双层膜结构的封闭囊泡,可以携带和分泌细胞内的蛋白质、核酸等并转运至受体细胞,是信号转导和细胞间通讯的重要载体,在多种生理和病理过程中发挥重要作用。近年来的研究发现,外泌体可以调节免疫应答、传递炎症信号、释放细胞因子,在变态反应性疾病中起关键作用。由于外泌体存在于多种体液中,有望在疾病早期筛查、疗效评估及预后分析中提供帮助。因此,本文就外泌体在变态反应性疾病中的研究进展进行综述,希望为疾病的诊治和预防提供新的思路和有效靶点。
中图分类号:
[1] Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease[J]. J Clin Invest, 2008, 118(11): 3546-3556. doi:10.1172/JCI36130. [2] Hardman CS, Chen YL, Salimi M, et al. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells? [J]. Sci Immunol, 2017, 2(18): eaan5918. doi:10.1126/sciimmunol.aan5918. [3] Nocera AL, Mueller SK, Stephan JR, et al. Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide[J]. J Allergy Clin Immunol, 2019, 143(4): 1525-1535.e1. doi:10.1016/j.jaci.2018.08.046. [4] Du YM, Zhuansun YX, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma[J]. Exp Cell Res, 2018, 363(1): 114-120. doi:10.1016/j.yexcr.2017.12.021. [5] Sims B, Farrow AL, Williams SD, et al. Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells[J]. Int J Nanomedicine, 2017, 12: 4823-4833. doi:10.2147/IJN.S132762. [6] Hough KP, Trevor JL, Strenkowski JG, et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells[J]. Redox Biol, 2018, 18: 54-64. doi:10.1016/j.redox.2018.06.009. [7] Okada N, Nakayama T, Asaka D, et al. Distinct gene expression profiles and regulation networks of nasal polyps in eosinophilic and non-eosinophilic chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2018, 8(5): 592-604. doi:10.1002/alr.22083. [8] Wong WY, Lee MM, Chan BD, et al. Proteomic profiling of dextran sulfate sodium induced acute ulcerative colitis mice serum exosomes and their immunomodulatory impact on macrophages[J]. Proteomics, 2016, 16(7): 1131-1145. doi:10.1002/pmic.201500174. [9] Bryniarski K, Ptak W, Martin E, et al. Free extracellular miRNA functionally targets cells by transfecting exosomes from their companion cells[J]. PLoS One, 2015, 10(4): e0122991. doi:10.1371/journal.pone.0122991. [10] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383. doi:10.1083/jcb.201211138. [11] Real JM, Ferreira LRP, Esteves GH, et al. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis?[J]. Crit Care, 2018, 22(1): 68. doi:10.1186/s13054-018-2003-3. [12] Ruffner MA, Kim SH, Bianco NR, et al. B7-1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function[J]. Eur J Immunol, 2009, 39(11): 3084-3090. doi:10.1002/eji.200939407. [13] Nazimek K, Askenase PW, Bryniarski K. Antibody light chains dictate the specificity of contact hypersensitivity effector cell suppression mediated by exosomes[J]. Int J Mol Sci, 2018, 19(9). doi:10.3390/ijms19092656. doi:10.3390/ijms19092656. [14] Lal CV, Olave N, Travers C, et al. Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants[J]. JCI Insight, 2018, 3(5): 93994. doi:10.1172/jci.insight.93994. [15] Alvarez S, Suazo C, Boltansky A, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation[J]. Transplant Proc, 2013, 45(10): 3719-3723. doi:10.1016/j.transproceed.2013.08.079. [16] Yamada Y, Limmon GV, Zheng DH, et al. Major shifts in the spatio-temporal distribution of lung antioxidant enzymes during influenza pneumonia[J]. PLoS One, 2012, 7(2): e31494. doi:10.1371/journal.pone.0031494. [17] Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of(prote)omics data[J]. Nat Methods, 2016, 13(9): 731-740. doi:10.1038/nmeth.3901. [18] Ziady AG, Hansen J. Redox balance in cystic fibrosis[J]. Int J Biochem Cell Biol, 2014, 52: 113-123. doi:10.1016/j.biocel.2014.03.006. [19] 刘芳兵. 炎症小体来源的外泌体激活巨噬细胞NF-κB信号通路[D]. 合肥: 安徽医科大学, 2018. [20] Irvin C, Zafar I, Good J, et al. Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma[J]. J Allergy Clin Immunol, 2014, 134(5): 1175-1186.e7. doi:10.1016/j.jaci.2014.05.038. [21] Deshane JS, Redden DT, Zeng MQ, et al. Subsets of airway myeloid-derived regulatory cells distinguish mild asthma from chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2015, 135(2): 413-424.e15. doi:10.1016/j.jaci.2014.08.040. [22] Zhao K, Liang GX, Sun X, et al. Comparative miRNAome analysis revealed different miRNA expression profiles in bovine sera and exosomes[J]. BMC Genomics, 2016, 17(1): 630. doi:10.1186/s12864-016-2962-1. [23] Taverna S, Amodeo V, Saieva L, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells[J]. Mol Cancer, 2014, 13: 169. doi:10.1186/1476-4598-13-169. [24] Qiao YM, Liang X, Yan YJ, et al. Identification of exosomal miRNAs in rats with pulmonary neutrophilic inflammation induced by zinc oxide nanoparticles[J]. Front Physiol, 2018, 9: 217. doi:10.3389/fphys.2018.00217. [25] Real JM, Ferreira LRP, Esteves GH, et al. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis?[J]. Crit Care, 2018, 22(1): 68. doi:10.1186/s13054-018-2003-3. [26] Gon Y, Maruoka S, Inoue T, et al. Selective release of miRNAs via extracellular vesicles is associated with house-dust mite allergen-induced airway inflammation[J]. Clin Exp Allergy, 2017, 47(12): 1586-1598. doi:10.1111/cea.13016. [27] Agarwal AR, Yin F, Cadenas E. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(10): L764-L773. doi:10.1152/ajplung.00165.2013. [28] Elahi FM, Farwell DG, Nolta JA, et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells[J]. Stem Cells, 2020, 38(1): 15-21. doi:10.1002/stem.3061. [29] 边晓敏, 韩光红. 细胞外囊泡在头颈部肿瘤中的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 99-104. doi:10.6040/j.issn.1673-3770.0.2019.370. BIAN Xiaomin, HAN Guanghong. Recent advances regarding extracellular vesicles in head and neck cancers[J]. J Otolaryngol Ophthalmol Shandong Univ, 2020, 34(1): 99-104. doi:10.6040/j.issn.1673-3770.0.2019.370. [30] Keller MD, Ching KL, Liang FX, et al. Decoy exosomes provide protection against bacterial toxins[J]. Nature, 2020, 579(7798): 260-264. doi:10.1038/s41586-020-2066-6. |
[1] | 朱晶,张睿,赵媛,李炀,樊孟耘,赵昱. 内镜下低温等离子消融治疗不同炎症分期先天性梨状窝瘘45例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 24-29. |
[2] | 马静远, 武天义, 孙占伟, 王卫卫, 李世超, 王广科. 鼻腔鼻窦内翻性乳头状瘤与外周血炎症标志物的相关性研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 35-39. |
[3] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[4] | 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35. |
[5] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[6] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
[7] | 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129. |
[8] | 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. |
[9] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
[10] | 狄宇,李莹. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150. |
[11] | 王俊鑫,孙岩. miRNA-29b参与上皮间质转化相关信号通路调控的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 132-137. |
[12] | 李化静,郝润梅,戴皓,张令,申震,权芳,邵渊. 儿茶素抑制卵清蛋白诱导的过敏性鼻炎小鼠模型炎症反应的机制研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 1-7. |
[13] | 张轶轶,薛刚,金春亭. 外泌体在甲状腺癌的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 131-135. |
[14] | 张金庄,殷璞,刘宁,王江宇,贾云芬,丁元吉,吴垚. FESS术后加用香菊胶囊与康复新液治疗慢性鼻窦炎伴有鼻息肉的对比研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 69-76. |
[15] | 朱正茹张小兵. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128. |
|