山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 98-104.doi: 10.6040/j.issn.1673-3770.0.2020.365
王宇婷,王嘉玺
WANG Yuting,WANG Jiaxi
摘要: 过敏性鼻炎是临床常见病,发病机制相对复杂,目前在诊断和治疗方面仍有缺陷。miRNA是近年来研究的热点,其在过敏性鼻炎中的研究让我们对疾病有了新的认识。文章主要从固有免疫、适应性免疫及表观遗传学因素等角度总结miRNA与过敏性鼻炎的关系,以期揭示过敏性鼻炎的发病机制。
中图分类号:
[1] Cheng L, Chen JJ, Fu QL, et al. Chinese society of allergy guidelines for diagnosis and treatment of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2018, 10(4): 300-353. doi:10.4168/aair.2018.10.4.300. [2] Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic[J]. Nat Rev Immunol, 2016, 16(5): 279-294. doi:10.1038/nri.2016.40. [3] Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2012, 185(2): 140-151. doi:10.1164/rccm.201103-0456oc. [4] Lu TX, Hartner J, Lim EJ, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity[J]. J Immunol, 2011, 187(6): 3362-3373. doi:10.4049/jimmunol.1101235. [5] Chen XF, Zhang LJ, Zhang J, et al. MiR-151a is involved in the pathogenesis of atopic dermatitis by regulating interleukin-12 receptor β2[J]. Exp Dermatol, 2018, 27(4): 427-432. doi:10.1111/exd.13276. [6] Suojalehto H, Lindström I, Majuri ML, et al. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis[J]. Int Arch Allergy Immunol, 2014, 163(3): 168-178. doi:10.1159/000358486. [7] Liu X, Ren Y, Sun X, et al. Bioinformatics-based approaches predict that MIR-17-5P functions in the pathogenesis of seasonal allergic rhinitis through regulating ABCA1 and CD69[J]. Am J Rhinol Allergy, 2019, 33(3): 269-276. doi:10.1177/1945892418823388. [8] Dunlop J, Matsui E, Sharma HP. Allergic rhinitis: environmental determinants[J]. Immunol Allergy Clin North Am, 2016, 36(2): 367-377. doi:10.1016/j.iac.2015.12.012. [9] Yu SY, Yehia G, Wang JF, et al. Global ablation of the mouse Rab11a gene impairs early embryogenesis and matrix metalloproteinase secretion[J]. J Biol Chem, 2014, 289(46): 32030-32043. doi:10.1074/jbc.M113.538223. [10] Wang J, Cui Z, Liu L, et al. MiR-146a mimic attenuates murine allergic rhinitis by downregulating TLR4/TRAF6/NF-κB pathway[J]. Immunotherapy, 2019, 11(13): 1095-1105. doi:10.2217/imt-2019-0047. [11] Xiao L, Jiang L, Hu Q, et al. MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in Murine Model of Allergic Rhinitis by Targeting Nlrp3[J]. Cellular Physiology and Biochemistry,2017,42:901-912. doi: 10.1159/000478645 [12] Tomazic PV, Birner-grueberger R, Leitner A, et al. Seasonal proteome changes of nasal mucus reflect perennial inflammatory response and reduced defence mechanisms and plasticity in allergic rhinitis[J]. J Proteomics,2016,133:153-160. doi: 10.1016/j.jprot.2015.12.021. [13] Shah SA, Ishinaga H, Hou B, et al. Effects of interleukin-31 on MUC5AC gene expression in nasal allergic inflammation[J]. Pharmacology, 2013, 91(3/4): 158-164. doi:10.1159/000346609. [14] Teng YS, Zhang RX, Liu CH, et al. miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1[J]. Biochem Biophys Res Commun, 2015, 457(1): 58-64. doi:10.1016/j.bbrc.2014.12.058. [15] Corren J. Role of interleukin-13 in asthma[J]. Curr Allergy Asthma Rep, 2013, 13(5): 415-420. doi:10.1007/s11882-013-0373-9. [16] Gao Y, Yu Z. MicroRNA-16 inhibits interleukin-13-induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor-κB pathway[J]. Mol Med Rep, 2018, 18(4): 4042-4050. doi:10.3892/mmr.2018.9394. [17] Zhao CY, Wang W, Yao HC, et al. SOCS3 is upregulated and targeted by miR30a-5p in allergic rhinitis[J]. Int Arch Allergy Immunol, 2018, 175(4): 209-219. doi:10.1159/000486857. [18] Luo XQ, Shao JB, Xie RD, et al. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis[J]. Oncotarget, 2017, 8(30): 48915-48921. doi:10.18632/oncotarget.16555. [19] Moreira AP, Cavassani KA, Hullinger R, et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease[J]. J Allergy Clin Immunol, 2010, 126(4): 712-721.e7. doi:10.1016/j.jaci.2010.06.010. [20] Wang L, Liu XY, Song XC, et al. MiR-202-5p promotes M2 polarization in allergic rhinitis by targeting MATN2[J]. Int Arch Allergy Immunol, 2019, 178(2): 119-127. doi:10.1159/000493803. [21] Anderson EL, Kobayashi T, Iijima K, et al. IL-33 mediates reactive eosinophilopoiesis in response to airborne allergen exposure[J]. Allergy, 2016, 71(7): 977-988. doi:10.1111/all.12861. [22] 江远航. miR-155对小鼠ILC2分泌Th2型细胞因子的影响[D]. 南昌: 南昌大学, 2019. [23] Yamada Y, Kosaka K, Miyazawa T, et al. miR-142-3p enhances FcεRI-mediated degranulation in mast cells[J]. Biochem Biophys Res Commun, 2014, 443(3): 980-986. doi:10.1016/j.bbrc.2013.12.078. [24] Xu H, Gu LN, Yang QY, et al. MiR-221 promotes IgE-mediated activation of mast cells degranulation by PI3K/Akt/PLCγ/Ca(2+)pathway[J]. J Bioenerg Biomembr, 2016, 48(3): 293-299. doi:10.1007/s10863-016-9659-7. [25] Ping He, Jin Ni, Hui Zhao, et al. Diagnostic value of miR-221 and miR-142-3p expressions of allergic rhinitis and miR-221 level is positively correlated with disease severity[J]. Int J Clin Exp Med,2017,10(5):7834-7842. [26] Banerjee A, Schambach F, DeJong CS, et al. Micro-RNA-155 inhibits IFN-γ signaling in CD4+ T cells[J]. Eur J Immunol, 2010, 40(1): 225-231. doi:10.1002/eji.200939381. [27] Chen Z, Deng Y, Li F, et al. MicroRNA-466a-3p attenuates allergic nasal inflammation in mice by targeting GATA3[J]. Clin Exp Immunol, 2019, 197(3): 366-375. doi:10.1111/cei.13312. [28] Deng YQ, Yang YQ, Wang SB, et al. Intranasal administration of lentiviral miR-135a regulates mast cell and allergen-induced inflammation by targeting GATA-3[J]. PLoS One, 2015, 10(9): e0139322. doi:10.1371/journal.pone.0139322. [29] Saad K, Zahran AM, Elsayh KI, et al. Variation of regulatory T lymphocytes in the peripheral blood of children with allergic rhinitis[J]. Arch Immunol Ther Exp(Warsz), 2018, 66(4): 307-313. doi:10.1007/s00005-017-0498-y. [30] Wang L, Yang X, Li W, et al. MiR-202-5p/MATN2 are associated with regulatory T-cells differentiation and function in allergic rhinitis[J]. Hum Cell, 2019, 32(4): 411-417. doi:10.1007/s13577-019-00266-0. [31] Liu HJ, Zhang AF, Zhao N, et al. Role of miR-146a in enforcing effect of specific immunotherapy on allergic rhinitis[J]. Immunol Investig, 2016, 45(1): 1-10. doi:10.3109/08820139.2015.1085390. [32] Chen RF, Huang HC, Ou CY, et al. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis[J]. Clin Exp Allergy, 2010, 40(10): 1482-1490. doi:10.1111/j.1365-2222.2010.03592.x. [33] Puxeddu I, Berkman N, Ribatti D, et al. Osteopontin is expressed and functional in human eosinophils[J]. Allergy, 2010, 65(2): 168-174. doi:10.1111/j.1398-9995.2009.02148.x. [34] Liu WL, Zeng QX, Luo RZ. Correlation between serum osteopontin and miR-181a levels in allergic rhinitis children[J]. Mediat Inflamm, 2016, 2016: 1-6. doi:10.1155/2016/9471215. [35] Moorchung N, Srivastava AN, Gupta NK, et al. Cytokine gene polymorphisms and the pathology of chronic gastritis[J]. Singapore Med J, 2007, 48(5): 447-454. [36] Mu ZL, Wang YL. The influence of overexpressions of microRNA-375 on the expression of thymic stromal lymphopoietin and IL-4, IL-13 in allergic rhinitis mice[J]. Asian Pac J Trop Med, 2018, 11(13): 43. doi:10.4103/1995-7645.243111. [37] Wang T, Chen D, Wang PH, et al. miR-375 prevents nasal mucosa cells from apoptosis and ameliorates allergic rhinitis via inhibiting JAK2/STAT3 pathway[J]. Biomed Pharmacother, 2018, 103: 621-627. doi:10.1016/j.biopha.2018.04.050. [38] Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J].Immunnity,2005,23(5):479-490.doi:10.1016/j.immuni.2005.09.015. [39] Suzukawa M, Iikura M, Koketsu R, et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor[J]. J Immunol, 2008, 181(9): 5981-5989. doi:10.4049/jimmunol.181.9.5981. [40] Liu HC, Liao Y, Liu CQ. miR-487b mitigates allergic rhinitis through inhibition of the IL-33/ST2 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(23): 8076-8083. doi:10.26355/eurrev_201812_16497. [41] Cui XH, Guo Y, Wang QR, et al. MiR-199-3p-Dnmt3a-STAT3 signalling pathway in ovalbumin-induced allergic rhinitis[J]. Exp Physiol, 2019, 104(8): 1286-1295. doi:10.1113/EP087751. [42] Chen CH, Wang CZ, Wang YH, et al. Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification[J]. Mediat Inflamm, 2014, 2014: 1-13. doi:10.1155/2014/625048. [43] Beier UH, Akimova T, Liu YJ, et al. Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells[J]. Curr Opin Immunol, 2011, 23(5): 670-678. doi:10.1016/j.coi.2011.07.002. [44] Beier UH, Wang LQ, Bhatti TR, et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival[J]. Mol Cell Biol, 2011, 31(5): 1022-1029. doi:10.1128/MCB.01206-10. [45] Hu D, Zhang Z, Ke X, et al. A functional variant of miRNA-149 confers risk for allergic rhinitis and comorbid asthma in Chinese children[J]. Int J Immunogenetics, 2017, 44(2): 62-70. doi:10.1111/iji.12307. [46] 陆文敏. TGF-β通路基因microRNAs结合区单核苷酸多态性与变应性鼻炎的关联研究[D]. 南京: 南京医科大学, 2014. |
[1] | 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70. |
[2] | 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91. |
[3] | 张雅琪,刘慧敏,曹淋曼,王子钰,林旭,李燕萍,薛刚,吴靖芳. MAPK、PI3K-AKT、NF-κB在小鼠过敏性鼻炎中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 254-259. |
[4] | 韩莹莹,李延忠. 阻塞性睡眠呼吸暂停低通气综合征与亚临床动脉粥样硬化[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 126-132. |
[5] | 庞冲,边赛男,张冰,尹旭,陆颖霞,叶鹏飞,王湛,赵晶,高彦,关凯. 儿童过敏性鼻炎粉尘螨特异性舌下免疫治疗短期疗效评估[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 70-74. |
[6] | 王鑫,刘巧平,闫占峰,刘思溟,朱雅静,丁倩,张莹,田媛,张京然. 基于网络药理学探究小青龙汤治疗过敏性鼻炎的作用机制[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 46-55. |
[7] | 李化静,郝润梅,戴皓,张令,申震,权芳,邵渊. 儿茶素抑制卵清蛋白诱导的过敏性鼻炎小鼠模型炎症反应的机制研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 1-7. |
[8] | 向浏岚,叶远航蒋璐云,刘洋. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122. |
[9] | 朱正茹张小兵. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128. |
[10] | 林兴,沈翎,林宗通,杨中婕. 儿童鼻腔异物与过敏性鼻炎关系的初步研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 101-104. |
[11] | 黄嘉莉杨淑荣. 变应性鼻炎中信号传导通路的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 125-129. |
[12] | 徐海侠,崔晓波,刘佳荣,李欣,刘佳宜,刘晓玲. 内蒙古呼和浩特城区气传致敏花粉流行情况调查[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 106-109. |
[13] | 林晓芹吴苗琴. 特发性视网膜前膜的发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 121-128. |
[14] | 罗露,周恩,欧阳思,陈义,肖旭平,王继华. 42例喉癌患者血清 microRNAlet-7a 水平的变化及意义[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 96-100. |
[15] | 邱昌余,周俊,庄德恩,杨晴,陆美萍,程雷. 人工智能技术在辅助耳鼻咽喉科医师了解过敏性鼻炎患者需求中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 88-94. |
|