山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 78-83.doi: 10.6040/j.issn.1673-3770.0.2021.583
黄丹怡,张婷,陈静,张薇
HUANG Danyi, ZHANG TingOverview,CHEN Jing, ZHANG Wei
摘要: 慢性鼻窦炎伴鼻息肉(CRSwNP)是耳鼻咽喉科的常见病,以鼻腔和鼻窦黏膜的高度异质性慢性炎症为特征。近年来,由于其发病率不断升高且易反复发作,预后较差,严重影响患者的生活质量,增加社会医疗经济负担。鼻黏膜上皮细胞构成的上皮屏障作为“守门员”,是鼻腔抵御病原体、过敏原等入侵的第一道防线。它通过启动防御机制、激活各类理化因子和调节免疫反应等维护宿主鼻腔黏膜的健康稳态。研究表明,上皮屏障功能障碍与CRSwNP的发生密切相关,也是目前CRSwNP领域的研究热点之一。因此,深入探究调控CRSwNP上皮屏障功能障碍的潜在分子生物学机制至关重要。本文将对上皮屏障在CRSwNP形成过程中的功能、作用机制和破坏因素等方面的研究进展作一综述,以期为阐明CRSwNP的病理机制提供见解,为其诊断和治疗的研究提供新方向。
中图分类号:
[1] Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients[J]. J Allergy Clin Immunol, 2017, 139(6): 1736-1751. doi:10.1016/j.jaci.2017.04.005. [2] Moens E, Veldhoen M. Epithelial barrier biology: good fences make good neighbours[J]. Immunology, 2012, 135(1): 1-8. doi:10.1111/j.1365-2567.2011.03506.x. [3] Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4[J]. J Allergy Clin Immunol, 2012, 130(5): 1087-1096.e10. doi:10.1016/j.jaci.2012.05.052. [4] Pothoven KL, Norton JE, Hulse KE, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease[J]. J Allergy Clin Immunol, 2015, 136(3): 737-746.e4. doi:10.1016/j.jaci.2015.01.043. [5] Toppila-Salmi S, van Drunen CM, Fokkens WJ, et al. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis[J]. Curr Allergy Asthma Rep, 2015, 15(2): 495. doi:10.1007/s11882-014-0495-8. [6] Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation[J]. J Allergy Clin Immunol, 2014, 134(3): 509-520. doi:10.1016/j.jaci.2014.05.049. [7] Lam K, Schleimer R, Kern RC. The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses[J]. Curr Allergy Asthma Rep, 2015, 15(7): 41. doi:10.1007/s11882-015-0540-2. [8] Kern RC, Conley DB, Walsh W, et al. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis[J]. Am J Rhinol, 2008, 22(6): 549-559. doi:10.2500/ajr.2008.22.3228. [9] Zhang N, van Crombruggen K, Gevaert E, et al. Barrier function of the nasal mucosa in health and type-2 biased airway diseases[J]. Allergy, 2016, 71(3): 295-307. doi:10.1111/all.12809. [10] Stevens WW, Schleimer RP, Kern RC. Chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol Pract, 2016, 4(4): 565-572. doi:10.1016/j.jaip.2016.04.012. [11] Gohy S, Hupin C, Ladjemi MZ, et al. Key role of the epithelium in chronic upper airways diseases[J]. Clin Exp Allergy, 2020, 50(2): 135-146. doi:10.1111/cea.13539. [12] Khalmuratova R, Park JW, Shin HW. Immune cell responses and mucosal barrier disruptions in chronic rhinosinusitis[J]. Immune Netw, 2017, 17(1): 60-67. doi:10.4110/in.2017.17.1.60. [13] Lambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization[J]. J Allergy Clin Immunol, 2014, 134(3): 499-507. doi:10.1016/j.jaci.2014.06.036. [14] Lambrecht BN, Hammad H. The airway epithelium in asthma[J]. Nat Med, 2012, 18(5): 684-692. doi:10.1038/nm.2737. [15] Niessen CM. Tight junctions/adherens junctions: basic structure and function[J]. J Invest Dermatol, 2007, 127(11): 2525-2532. doi:10.1038/sj.jid.5700865. [16] Kojima T, Go M, Takano K, et al. Regulation of tight junctions in upper airway epithelium[J]. Biomed Res Int, 2013, 2013: 947072. doi:10.1155/2013/947072. [17] Zihni C, Mills C, Matter K, et al. Tight junctions: from simple barriers to multifunctional molecular gates[J]. Nat Rev Mol Cell Biol, 2016, 17(9): 564-580. doi:10.1038/nrm.2016.80. [18] Balda MS, Matter K. Tight junctions and the regulation of gene expression[J]. Biochim Biophys Acta, 2009, 1788(4): 761-767. doi:10.1016/j.bbamem.2008.11.024. [19] Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions?[J]. Nat Rev Immunol, 2021, 21(11): 739-751. doi:10.1038/s41577-021-00538-7. [20] Pothoven KL, Schleimer RP. The barrier hypothesis and Oncostatin M: restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease[J]. Tissue Barriers, 2017, 5(3): e1341367. doi:10.1080/21688370.2017.1341367. [21] Bernstein JM, Gorfien J, Noble B, et al. Nasal polyposis: immunohistochemistry and bioelectrical findings(a hypothesis for the development of nasal polyps)[J]. J Allergy Clin Immunol, 1997, 99(2): 165-175. doi:10.1016/s0091-6749(97)70091-5. [22] Rogers GA, den Beste K, Parkos CA, et al. Epithelial tight junction alterations in nasal polyposis[J]. Int Forum Allergy Rhinol, 2011, 1(1): 50-54. doi:10.1002/alr.20014. [23] Meng J, Zhou P, Liu YF, et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling[J]. PLoS One, 2013, 8(12): e82373. doi:10.1371/journal.pone.0082373. [24] Huang ZQ, Liu J, Ong HH, et al. Interleukin-13 alters tight junction proteins expression thereby compromising barrier function and dampens rhinovirus induced immune responses in nasal epithelium[J]. Front Cell Dev Biol, 2020, 8: 572749. doi:10.3389/fcell.2020.572749. [25] 史丽丽, 陆翔, 刘争, 等. 上皮性钙黏蛋白与闭锁蛋白在慢性鼻-鼻窦炎上皮的表达及意义[J]. 临床耳鼻咽喉头颈外科杂志, 2012, 26(11): 499-501, 506. doi:10.13201/j.issn.1001-1781.2012.11.008. SHI Lili, LU Xiang, LIU Zheng, et al. The expression of E-cadherin and occludin in epithelium of chronic rhinosinositis and its significant[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2012, 26(11): 499-501, 506. doi:10.13201/j.issn.1001-1781.2012.11.008. [26] Li Y, Wang XD, Wang RH, et al. The expression of epithelial intercellular junctional proteins in the sinonasal tissue of subjects with chronic rhinosinusitis: a histopathologic study[J]. ORL J Otorhinolaryngol Relat Spec, 2014, 76(2): 110-119. doi:10.1159/000362246. [27] Jiao J, Wang M, Duan S, et al. Transforming growth factor-β1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2018, 141(3): 1160-1163.e9. doi:10.1016/j.jaci.2017.08.045. [28] Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis[J]. J Clin Invest, 2003, 112(12): 1776-1784. doi:10.1172/JCI20530. [29] Das V, Bhattacharya S, Chikkaputtaiah C, et al. The basics of epithelial-mesenchymal transition(EMT): a study from a structure, dynamics, and functional perspective[J]. J Cell Physiol, 2019:5. doi:10.1002/jcp.28160. [30] Thiery JP, Acloque H, Huang RYJ, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890. doi:10.1016/j.cell.2009.11.007. [31] Huang RYJ, Guilford P, Thiery JP. Early events in cell adhesion and polarity during epithelial-mesenchymal transition[J]. J Cell Sci, 2012, 125(Pt 19): 4417-4422. doi:10.1242/jcs.099697. [32] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196. doi:10.1038/nrm3758. [33] Bartis D, Mise N, Mahida RY, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? [J]. Thorax, 2014, 69(8): 760-765. doi:10.1136/thoraxjnl-2013-204608. [34] Kagalwalla AF, Akhtar N, Woodruff SA, et al. Eosinophilic esophagitis: epithelial mesenchymal transition contributes to esophageal remodeling and reverses with treatment[J]. J Allergy Clin Immunol, 2012, 129(5): 1387-1396.e7. doi:10.1016/j.jaci.2012.03.005. [35] 高云博, 张媛, 张罗. 上皮-间质转化与慢性鼻窦炎的研究进展[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 231-236.doi:10.3760/cma.j.issn.1673-0860.2019.03.015. GAO Yunbo, ZHANG Yuan, ZHANG Luo. Advance in epithelial-mesenchymal transition in chronic rhinosinusitis[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 231-236. doi:10.3760/cma.j.issn.1673-0860.2019.03.015. [36] Könnecke M, Burmeister M, Pries R, et al. Epithelial-mesenchymal transition in chronic rhinosinusitis: differences revealed between epithelial cells from nasal polyps and inferior turbinates[J]. Arch Immunol Ther Exp(Warsz), 2017, 65(2): 157-173. doi:10.1007/s00005-016-0409-7. [37] Yan B, Wang Y, Li Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2019, 9(3): 270-280. doi:10.1002/alr.22243. [38] Yang NN, Cheng H, Mo Q, et al. miR1555p downregulation inhibits epithelialtomesenchymal transition by targeting SIRT1 in human nasal epithelial cells[J]. Mol Med Rep, 2020, 22(5): 3695-3704. doi:10.3892/mmr.2020.11468. [39] Zhang T, Zhou Y, You B, et al. miR-30a-5p inhibits epithelial-to-mesenchymal transition by targeting CDK6 in nasal polyps[J]. Am J Rhinol Allergy, 2021, 35(2): 152-163. doi:10.1177/1945892420939814. [40] Shikani AH, Sidhaye VK, Basaraba RJ, et al. Mucosal expression of aquaporin 5 and epithelial barrier proteins in chronic rhinosinusitis with and without nasal polyps[J]. Am J Otolaryngol, 2014, 35(3): 377-383. doi:10.1016/j.amjoto.2013.11.011. [41] Yukitatsu Y, Hata M, Yamanegi K, et al. Decreased expression of VE-cadherin and claudin-5 and increased phosphorylation of VE-cadherin in vascular endothelium in nasal polyps[J]. Cell Tissue Res, 2013, 352(3): 647-657. doi:10.1007/s00441-013-1583-0. [42] Chen B, Shaari J, Claire SE, et al. Altered sinonasal ciliary dynamics in chronic rhinosinusitis[J]. Am J Rhinol, 2006, 20(3): 325-329. doi:10.2500/ajr.2006.20.2870. [43] Gudis D, Zhao KQ, Cohen NA. Acquired Cilia dysfunction in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2012, 26(1): 1-6. doi:10.2500/ajra.2012.26.3716. [44] Jiao J, Duan S, Meng N, et al. Role of IFN-γ, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2016, 46(3): 449-460. doi:10.1111/cea.12644. [45] London NR Jr, Tharakan A, Ramanathan M Jr. The role of innate immunity and aeroallergens in chronic rhinosinusitis[J]. Adv Otorhinolaryngol, 2016, 79: 69-77. doi:10.1159/000445132. [46] Henriquez OA, den Beste K, Hoddeson EK, et al. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions[J]. Int Forum Allergy Rhinol, 2013, 3(8): 630-635. doi:10.1002/alr.21168. [47] London NR Jr, Tharakan A, Lane AP, et al. Nuclear erythroid 2-related factor 2 activation inhibits house dust mite-induced sinonasal epithelial cell barrier dysfunction[J]. Int Forum Allergy Rhinol, 2017, 7(5): 536-541. doi:10.1002/alr.21916. [48] Rusznak C, Sapsford RJ, Devalia JL, et al. Cigarette smoke potentiates house dust mite allergen-induced increase in the permeability of human bronchial epithelial cells in vitro[J]. Am J Respir Cell Mol Biol, 1999, 20(6): 1238-1250. doi:10.1165/ajrcmb.20.6.3226. [49] Rusznak C, Mills PR, Devalia JL, et al. Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease[J]. Am J Respir Cell Mol Biol, 2000, 23(4): 530-536. doi:10.1165/ajrcmb.23.4.3959. [50] Tharakan A, Halderman AA, Lane AP, et al. Reversal of cigarette smoke extract-induced sinonasal epithelial cell barrier dysfunction through Nrf2 Activation[J]. Int Forum Allergy Rhinol, 2016, 6(11): 1145-1150. doi:10.1002/alr.21827. [51] Zhao RW, Guo ZQ, Zhang RX, et al. Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation[J]. J Appl Toxicol, 2018, 38(5): 678-687. doi:10.1002/jat.3573. [52] Hariri BM, Cohen NA. New insights into upper airway innate immunity[J]. Am J Rhinol Allergy, 2016, 30(5): 319-323. doi:10.2500/ajra.2016.30.4360. [53] Rudack C, Steinhoff M, Mooren F, et al. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium[J]. Clin Exp Allergy, 2007, 37(7): 1009-1022. doi:10.1111/j.1365-2222.2007.02686.x. [54] Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease[J]. Physiol Rev, 2004, 84(2): 579-621. doi:10.1152/physrev.00028.2003. [55] Altunbulakli C, Costa R, Lan F, et al. Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps[J]. J Allergy Clin Immunol, 2018, 142(2): 665-668.e8. doi:10.1016/j.jaci.2018.01.046. [56] Martens K, Seys SF, Alpizar YA, et al. Staphylococcus aureus enterotoxin B disrupts nasal epithelial barrier integrity[J]. Clin Exp Allergy, 2021, 51(1): 87-98. doi:10.1111/cea.13760. [57] Sajjan U, Wang Q, Zhao Y, et al. Rhinovirus disrupts the barrier function of polarized airway epithelial cells[J]. Am J Respir Crit Care Med, 2008, 178(12): 1271-1281. doi:10.1164/rccm.200801-136OC. [58] Banyer JL, Hamilton NH, Ramshaw IA, et al. Cytokines in innate and adaptive immunity[J]. Rev Immunogenet, 2000, 2(3): 359-373. [59] 慕婷婷, 杨玉娟, 张宇, 等. IL-36在慢性鼻-鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 114-118. doi:10.6040/j.issn.1673-3770.0.2020.146. MU Tingting, YANG Yujuan, ZHANG Yu, et al. Research progress of IL-36 in chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 114-118.doi:10.6040/j.issn.1673-3770.0.2020.146. [60] Wise SK, Laury AM, Katz EH, et al. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression[J]. Int Forum Allergy Rhinol, 2014, 4(5): 361-370. doi:10.1002/alr.21298. [61] Wang CS, Yan B, Zhang L. The epithelium-derived inflammatory mediators of chronic rhinosinusitis with nasal polyps[J]. Expert Rev Clin Immunol, 2020, 16(3): 293-310. doi:10.1080/1744666X.2020.1723417. [62] Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia[J]. Physiol Rev, 1996, 76(3): 839-885. doi:10.1152/physrev.1996.76.3.839. [63] Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis[J]. BMB Rep, 2018, 51(2): 59-64. doi:10.5483/bmbrep.2018.51.2.014. [64] 郑静, 魏欣, 粘家斌, 等. 低氧诱导鼻黏膜上皮细胞释放高迁移率族蛋白1促进上皮屏障损伤[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(15): 1178-1181. doi:10.13201/j.issn.1001-1781.2017.15.009. ZHENG Jing, WEI Xin, ZHAN Jiabin, et al. High mobility group box1 contributes to hypoxia-induced barrier dysfunction of nasal epithelial cells[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2017, 31(15): 1178-1181. doi:10.13201/j.issn.1001-1781.2017.15.009. [65] Shin HW, Cho K, Kim DW, et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition[J]. Am J Respir Crit Care Med, 2012, 185(9): 944-954. doi:10.1164/rccm.201109-1706OC. |
[1] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[2] | 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19. |
[3] | 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29. |
[4] | 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35. |
[5] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[6] | 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. |
[7] | 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55. |
[8] | 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63. |
[9] | 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70. |
[10] | 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77. |
[11] | 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91. |
[12] | 于龙刚,姜彦. 鼻细菌微生物组与慢性鼻窦炎伴鼻息肉相关性的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 92-97. |
[13] | 资昊坤,肖旭平,李云秋. 口服糖皮质激素在慢性鼻窦炎伴鼻息肉围手术期的应用现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 98-103. |
[14] | 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109. |
[15] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
|