山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (4): 149-153.doi: 10.6040/j.issn.1673-3770.0.2023.033

• 综述 • 上一篇    

非手术的近视管理方法与脉络膜的研究进展

张莉苑,钟定娟,王华   

  1. 湖南师范大学附属第一医院/湖南省人民医院 眼视光中心, 湖南 长沙 410005
  • 发布日期:2024-07-09
  • 通讯作者: 王华. E-mail:wanghuaeye@163.com

Advancements in non-surgical management of myopia and choroidal research

ZHANG Liyuan, ZHONG Dingjuan, WANG Hua   

  1. Department of Optometry and Ophthalmology, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
  • Published:2024-07-09

摘要: 近视形成机制极为复杂,近年来提出的“巩膜缺氧学说”认为巩膜缺氧、重塑可能是近视形成的关键因素,而脉络膜厚度及脉络膜血流变化可能在视网膜巩膜通路中发挥重要作用参与调节眼球生长。研究发现脉络膜变薄伴随着近视的发生和发展,而角膜塑形镜、阿托品滴眼液和环境光暴露等干预措施可增加脉络膜厚度,提示脉络膜增厚是近视进展的保护因素。因此,本文对近视与脉络膜的关系及近视的光学、药物和环境干预措施对脉络膜产生的变化进行综述,旨在更好了解此类非手术的干预措施对脉络膜的影响。

关键词: 近视, 脉络膜厚度, 脉络膜血流, 干预措施

Abstract: The mechanisms of development of myopia are extremely complex. The “scleral hypoxia theory” proposed in recent years suggests that scleral hypoxia and remodeling may be a key factor in the development of myopia. Choroidal thickness and choroidal blood flow changes may play an important role in the retinal scleral pathway signaling and participate in the regulation of eyeball growth. Studies have shown choroidal thinning to be associated with the onset and development of myopia. Interventions such as orthokeratology, atropine eye drops and exposure to ambient light can increase choroidal thickness, suggesting that choroidal thickening is a protective factor for myopia progression. Therefore, this paper reviews the relationship between myopia and choroid, and the changes induced in the choroid by optical, drug and environmental interventions used for improvement of myopia, aiming to better understand the effects of such non-surgical interventions on choroid.

Key words: Myopia, Choroidal thickness, Choroidal blood flow, Intervention measure

中图分类号: 

  • R778.1+1
[1] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006
[2] Liu L, Li R, Huang D, et al. Prediction of premyopia and myopia in Chinese preschool children: a longitudinal cohort[J]. BMC Ophthalmol, 2021, 21(1): 283. doi:10.1186/s12886-021-02045-8
[3] Read SA, Fuss JA, Vincent SJ, et al. Choroidal changes in human myopia: insights from optical coherence tomography imaging[J]. Clin Exp Optom, 2019, 102(3): 270-285. doi:10.1111/cxo.12862
[4] Swiatczak B, Schaeffel F, Calzetti G. Imposed positive defocus changes choroidal blood flow in young human subjects[J]. Graefe's Arch Clin Exp Ophthalmol, 2023, 261(1): 115-125. doi:10.1007/s00417-022-05842-z
[5] Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks[J]. Vision Res, 1995, 35(9): 1175-1194. doi:10.1016/0042-6989(94)00233-c
[6] Moderiano D, Do M, Hobbs S, et al. Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes[J]. Exp Eye Res, 2019, 182: 125-136. doi:10.1016/j.exer.2019.03.019
[7] Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-E7100. doi:10.1073/pnas.1721443115
[8] Zhou XT, Pardue MT, Iuvone PM, et al. Dopamine signaling and myopia development: what are the key challenges[J]. Prog Retin Eye Res, 2017, 61: 60-71. doi:10.1016/j.preteyeres.2017.06.003
[9] Yu MR, Liu WY, Wang BJ, et al. Short wavelength(blue)light is protective for lens-induced myopia in guinea pigs potentially through a retinoic acid-related mechanism[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 21. doi:10.1167/iovs.62.1.21
[10] Cui DM, Trier K, Zeng JW, et al. Adenosine receptor protein changes in guinea pigs with form deprivation myopia[J]. Acta Ophthalmol, 2010, 88(7): 759-765. doi:10.1111/j.1755-3768.2009.01559.x
[11] Nickla DL, Totonelly K, Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks[J]. Exp Eye Res, 2010, 91(5): 715-720. doi:10.1016/j.exer.2010.08.021
[12] Mathis U, Feldkaemper M, Liu H, et al. Studies on the interactions of retinal dopamine with choroidal thickness in the chicken[J]. Graefe's Arch Clin Exp Ophthalmol, 2023, 261(2): 409-425. doi:10.1007/s00417-022-05837-w
[13] Cui DM, Trier K, Zeng JW, et al. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs[J]. Acta Ophthalmol, 2011, 89(4): 328-334. doi:10.1111/j.1755-3768.2009.01688.x
[14] Zhang DR, Deng ZH, Tan J, et al. All-trans retinoic acid stimulates the secretion of TGF-β2 via the phospholipase C but not the adenylyl cyclase signaling pathway in retinal pigment epithelium cells[J]. BMC Ophthalmol, 2019, 19(1): 23. doi:10.1186/s12886-018-1017-6
[15] Liu YL, Wang LJ, Xu YY, et al. The influence of the choroid on the onset and development of myopia: from perspectives of choroidal thickness and blood flow[J]. Acta Ophthalmol, 2021, 99(7): 730-738. doi:10.1111/aos.14773
[16] Lu HW, Guan YQ, Wei GC, et al. The relationship between choroidal thickness and axis length and corneal curvature in high myopia[J]. Pak J Med Sci, 2022, 38(7): 1999-2004. doi:10.12669/pjms.38.7.6409
[17] Wang YY, Chen SS, Lin J, et al. Vascular changes of the choroid and their correlations with visual acuity in pathological myopia[J]. Invest Ophthalmol Vis Sci, 2022, 63(12): 20. doi:10.1167/iovs.63.12.20
[18] Zhang S, Zhang GY, Zhou X, et al. Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083. doi:10.1167/iovs.18-26397
[19] Yang X, Li ZY, Zeng JW. A review of the potential factors influencing myopia progression in children using orthokeratology[J]. Asia Pac J Ophthalmol, 2016, 5(6): 429-433. doi:10.1097/APO.0000000000000242
[20] Zhu Q, Zhao Q. Short-term effect of orthokeratology lens wear on choroidal blood flow in children with low and moderate myopia[J]. Sci Rep, 2022, 12(1): 17653. doi:10.1038/s41598-022-21594-6
[21] Li ZY, Hu Y, Cui DM, et al. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length[J]. Acta Ophthalmol, 2019, 97(3): e454-e459. doi:10.1111/aos.13866
[22] Jin WQ, Huang SH, Jiang J, et al. Short term effect of choroid thickness in the horizontal meridian detected by spectral domain optical coherence tomography in myopic children after orthokeratology[J]. Int J Ophthalmol, 2018, 11(6): 991-996. doi:10.18240/ijo.2018.06.16
[23] Chen XH, Li QS, Liu LQ. Personalized predictive modeling of subfoveal choroidal thickness changes for myopic adolescents after overnight orthokeratology[J]. J Pers Med, 2022, 12(8): 1316. doi:10.3390/jpm12081316
[24] 张菊, 李晓晓, 刘明娜, 等. 儿童配戴角膜塑形镜后早期角膜生物力学变化特征[J]. 中华眼视光学与视觉科学杂志, 2022, 24(4): 248-254. doi:10.3760/cma.j.cn115909-20210819-00326 ZHANG Ju, LI Xiaoxiao, LIU Mingna, et al. Analysis of early corneal biomechanical changes in children after wearing orthokeratology contact lenses[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2022, 24(4): 248-254. doi:10.3760/cma.j.cn115909-20210819-00326
[25] Sankaridurg P, Bakaraju RC, Naduvilath T, et al. Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2year results from a randomised clinical trial[J]. Ophthalmic Physiol Opt, 2019, 39(4): 294-307. doi:10.1111/opo.12621
[26] 代诚, 李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105. doi: 10.6040/j.issn.1673-3770.0.2021.212 DAI Cheng, LI Binzhong. Advances in multifocal soft corneal contact lens research[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 100-105. doi: 10.6040/j.issn.1673-3770.0.2021.212
[27] 陈楠, 薛劲松, 蔡江怀, 等. 光学离焦技术控制近视的研究进展[J]. 国际眼科杂志, 2022, 22(2): 260-264. doi:10.3980/j.issn.1672-5123.2022.2.17 CHEN Nan, XUE Jinsong, CAI Jianghuai, et al. Slowing the progression of myopia with the optical defocus strategies[J]. International Eye Science, 2022, 22(2): 260-264. doi:10.3980/j.issn.1672-5123.2022.2.17
[28] Prieto-Garrido FL, Villa-Collar C, Hernandez-Verdejo JL, et al. Changes in the choroidal thickness of children wearing MiSight to control myopia[J]. J Clin Med, 2022, 11(13): 3833. doi:10.3390/jcm11133833
[29] Breher K, García García M, Ohlendorf A, et al. The effect of the optical design of multifocal contact lenses on choroidal thickness[J]. PLoS One, 2018, 13(11): e0207637. doi:10.1371/journal.pone.0207637
[30] Erdinest N, London N, Lavy I, et al. Peripheral defocus and myopia management: a mini-review[J]. Korean J Ophthalmol, 2023, 37(1): 70-81. doi:10.3341/kjo.2022.0125
[31] Chun RKM, Zhang HY, Liu ZJ, et al. Defocus incorporated multiple segments(DIMS)spectacle lenses increase the choroidal thickness: a two-year randomized clinical trial[J]. Eye Vis, 2023, 10(1): 39. doi:10.1186/s40662-023-00356-z
[32] 陈颖, 刘晓庆, 周瑜峰, 等. 脉络膜厚度在角膜塑形镜和周边离焦型镜片框架镜控制近视患者中的差异[J]. 眼科新进展, 2023, 43(2): 131-136. doi:10.13389/j.cnki.rao.2023.0026 CHEN Ying, LIU Xiaoqing, ZHOU Yufeng, et al. Difference in choroidal thicknesses under myopia control using the orthoker-atology lens and peripheral defocus spectacle lens[J]. Recent Advances in Ophthalmology, 2023, 43(2): 131-136. doi:10.13389/j.cnki.rao.2023.0026
[33] Huang YY, Li X, Wu JQ, et al. Effect of spectacle lenses with aspherical lenslets on choroidal thickness in myopic children: a 2-year randomised clinical trial[J]. Br J Ophthalmol, 2023, 107(12): 1806-1811. doi:10.1136/bjo-2022-321815
[34] Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to slow progression of myopia in children[J]. Cochrane Database Syst Rev, 2020, 1(1): CD004916. doi:10.1002/14651858.CD004916.pub4
[35] 陈辉. 毒蕈碱拮抗剂减缓近视发展的研究进展[J]. 中华实验眼科杂志, 2017, 35(6): 556-560. doi:10.3760/cma.j.issn.2095-0160.2017.06.015 CHEN Hui. Advances of muscarinic antagonists slowing the progression of myopia[J]. Chinese Journal of Experimental Ophthalmology, 2017, 35(6): 556-560. doi:10.3760/cma.j.issn.2095-0160.2017.06.015
[36] 刘凌. 近视的药物治疗[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 123-128. doi:10.6040/j.issn.1673-3770.0.2020.313 LIU Ling. Drug therapy for myopia[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 123-128. doi:10.6040/j.issn.1673-3770.0.2020.313
[37] Ha A, Kim SJ, Shim SR, et al. Efficacy and safety of 8 atropine concentrations for myopia control in children: a network meta-analysis[J]. Ophthalmology, 2022, 129(3): 322-333. doi:10.1016/j.ophtha.2021.10.016
[38] 尹奕秀, 刘新泉. 阿托品眼用制剂在儿童近视中应用的研究进展[J]. 中国中医眼科杂志, 2022, 32(12): 982-986. doi:10.13444/j.cnki.zgzyykzz.2022.12.015 YIN Yixiu, LIU Xinquan. Research progress of atropine eye preparations application in myopia children[J]. China Journal of Chinese Ophthalmology, 2022, 32(12): 982-986. doi:10.13444/j.cnki.zgzyykzz.2022.12.015
[39] Yam JC, Jiang YN, Lee J, et al. The association of choroidal thickening by atropine with treatment effects for myopia: two-year clinical trial of the low-concentration atropine for myopia progression(LAMP)study[J]. Am J Ophthalmol, 2022, 237: 130-138. doi:10.1016/j.ajo.2021.12.014
[40] Sander BP. Prevention of choroidal thinning by 0.01% atropine administered 24 h before exposure to hyperopic blur in young myopes[J]. J Ocul Pharmacol Ther, 2021, 37(9): 510-517. doi:10.1089/jop.2021.0006
[41] Zhong XW, Ge J, Smith EL 3rd, et al. Image defocus modulates activity of bipolar and amacrine cells in macaque retina[J]. Invest Ophthalmol Vis Sci, 2004, 45(7): 2065-2074. doi:10.1167/iovs.03-1046
[42] Schaeffel F, Bartmann M, Hagel G, et al. Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens[J]. Vision Res, 1995, 35(9): 1247-1264. doi:10.1016/0042-6989(94)00221-7
[43] Hao Q, Zhao Q. Changes in subfoveal choroidal thickness in myopic children with 0.01% atropine, orthokeratology, or their combination[J]. Int Ophthalmol, 2021, 41(9): 2963-2971. doi:10.1007/s10792-021-01855-5
[44] Chiang STH, Turnbull PRK, Phillips JR. Additive effect of atropine eye drops and short-term retinal defocus on choroidal thickness in children with myopia[J]. Sci Rep, 2020, 10(1): 18310. doi:10.1038/s41598-020-75342-9
[45] Li WB, Bai CX, Liu H. Genetic and environmental-genetic interaction rules for the myopia based on a family exposed to risk from a myopic environment[J]. Gene, 2017, 626: 305-308. doi:10.1016/j.gene.2017.05.051
[46] Mu JF, Zhong HX, Zeng D, et al. Research trends and hotspots in the relationship between outdoor activities and myopia: a bibliometric analysis based on the web of science database from 2006 to 2021[J]. Front Public Health, 2022, 10: 1047116. doi:10.3389/fpubh.2022.1047116
[47] Ulaganathan S, Read SA, Collins MJ, et al. Daily axial length and choroidal thickness variations in young adults: associations with light exposure and longitudinal axial length and choroid changes[J]. Exp Eye Res, 2019, 189: 107850. doi:10.1016/j.exer.2019.107850
[48] Chakraborty R, Baranton K, Spiegel D, et al. Effects of mild- and moderate-intensity illumination on short-term axial length and choroidal thickness changes in young adults[J]. Ophthalmic Physiol Opt, 2022, 42(4): 762-772. doi:10.1111/opo.12988
[49] Lan WZ, Feldkaemper M, Schaeffel F. Bright light induces choroidal thickening in chickens[J]. Optom Vis Sci, 2013, 90(11): 1199-1206. doi:10.1097/opx.0000000000000074
[50] Xiong F, Mao T, Liao HF, et al. Orthokeratology and low-intensity laser therapy for slowing the progression of myopia in children[J]. Biomed Res Int, 2021, 2021: 8915867. doi:10.1155/2021/8915867
[51] Xiong RL, Zhu ZT, Jiang Y, et al. Longitudinal changes and predictive value of choroidal thickness for myopia control after repeated low-level red-light therapy[J]. Ophthalmology, 2023, 130(3): 286-296. doi:10.1016/j.ophtha.2022.10.002
[52] Jiang X, Pardue MT, Mori K, et al. Violet light suppresses lens-induced myopia via neuropsin(OPN5)in mice[J]. Proc Natl Acad Sci USA, 2021, 118(22): e2018840118. doi:10.1073/pnas.2018840118
[1] 李飏,刘鸫,曹文捷. 红光治疗对近视儿童等效球镜度、眼轴长度及脉络膜厚度影响的Meta分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 74-81.
[2] 卢松,夏逸帆,李子晔,魏菁. 无视网膜脱离的儿童Stickler综合征1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 97-101.
[3] 胡亚柔,赵欣予,吴桢泉,范梓欣,余震,刘亚玲,陈婷毅,曾键,张国明. 早产儿屈光状态与眼部生物特征的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 144-150.
[4] 吴丽丽,曲毅. OCTA在病理性近视脉络膜新生血管应用及其在人工智能的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 144-149.
[5] 买尔哈巴·玉素甫,克里木江·阿不拉,丁琳,秦艳莉,陈雪艺. 伴发于后巩膜葡萄肿的高度近视性白内障眼底病变相关研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 107-114.
[6] 赵露,田慧文,孟博,王薇,王艳玲. 颈内动脉闭塞患者黄斑区视网膜脉络膜厚度变化分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 72-76.
[7] 尤冉,郭笑霄,王薇,陈曦,王艳玲. 高度近视患者黄斑区视网膜劈裂分型与脉络膜特征分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 83-87.
[8] 孟博,王康,罗丽华,王艳玲,李爽. 基于WOS数据库的高度近视黄斑裂孔性视网膜脱离研究特征及趋势分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 84-90.
[9] 熊翩翩,王佳琳,孙姣,周卓华,王艳玲. 高度近视豹纹状眼底视网膜脉络膜血流改变及相关性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 114-121.
[10] 赵泓霄,张晗. 光学放大效应对神经节细胞复合体测量的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 105-109.
[11] 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105.
[12] 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71.
[13] 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107.
[14] 李莹. 重视角膜屈光手术操作规范及并发症防治[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 1-6.
[15] 张颖,雷玉琳,马志兴,杨星花,张静,侯杰. SMILE联合快速角膜交联术后角膜光密度的早期临床观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 52-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!