山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (5): 52-57.doi: 10.6040/j.issn.1673-3770.0.2023.147
• 论著 • 上一篇
张莉苑,郭颖卓,陈蛟,王华,钟定娟
ZHANG Liyuan, GUO Yingzhuo, CHEN Jiao, WANG Hua, ZHONG Dingjuan
摘要: 目的 探讨650 nm低能量红光联合角膜塑形镜矫正及延缓近视的临床有效性及安全性。 方法 选取年龄≥7岁的近视患者71例,依据患者自身真实情况,分为佩戴单焦框架眼镜组(对照组)、650 nm低能量红光联合单焦框架眼镜组(红光组)、角膜塑形镜组(OK组)、650 nm低能量红光联合角膜塑形镜组(联合组)4组。入组后1个月、3个月、6个月进行随访,评估眼轴、等效球镜、脉络膜厚度、最佳矫正视力及眼压,并利用光学相干断层扫描成像观察黄斑中心凹6 mm范围的视网膜结构,评估其安全性。采用双因素方差分析、 χ2检验、重复测量方差分析等方法进行数据分析。 结果 观察至6个月时, 对照组、OK组、红光组、联合组眼轴相对于基线期的变化值差异有统计学意义[(0.181±0.104)mm、(0.069±0.108)mm、(-0.130±0.141)mm、(-0.164±0.118)mm, P<0.001],其中联合组控制眼轴的效果最佳。红光组与对照组等效球镜相对于基线期的变化值差异有统计学意义[(0.028±0.274)D、(-0.309±0.193)D, P<0.001]。红光组、OK组、联合组在1个月、3个月、6个月时脉络膜厚度相对于基线期的变化值差异均有统计学意义(均P<0.001),仅联合组在6个月内呈现持续增长的趋势。红光组与联合组黄斑中心凹6 mm范围内视网膜结构层次清晰,未见异常。 结论 650 nm低能量红光联合角膜塑形镜能控制近视进展,两者联用后对近视的控制效果优于单用红光或角膜塑形镜,且未影响视网膜结构及最佳矫正视力。
中图分类号:
[1] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of Myopia and high Myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006 [2] Kaiti R, Shyangbo R, Sharma IP, et al. Review on current concepts of myopia and its control strategies[J]. Int J Ophthalmol, 2021, 14(4): 606-615. doi:10.18240/ijo.2021.04.19 [3] 刘艺, 于明坤, 孙伟, 等. 角膜塑形术控制儿童近视有效性与安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 92-100. doi:10.6040/j.issn.1673-3770.0.2021.037 LIU Yi, YU Mingkun, SUN Wei, et al. The effectiveness and safety of orthokeratology on controlling myopia of children: a meta-analysis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 92-100. doi:10.6040/j.issn.1673-3770.0.2021.037 [4] 赵宏伟, 黄一飞. 光照与近视发生发展的关系[J]. 国际眼科杂志, 2016(1): 74-76. doi:10.3980/j.issn.1672-5123.2016.1.19 ZHAO Hongwei, HUANG Yifei. Relationship between light and the development of myopia[J]. Int Eye Sci, 2016(1): 74-76. doi:10.3980/j.issn.1672-5123.2016.1.19 [5] 朱秋蓉, 刘陇黔. 近视与光照的关系[J]. 四川大学学报(医学版), 2021, 52(6): 901-906. doi:10.12182/20211160205 ZHU Qiurong, LIU Longqian. Relationship between Myopia and light exposure[J]. J Sichuan Univ(Med Sci), 2021, 52(6): 901-906. doi:10.12182/20211160205 [6] 陈培正, 张宏亮, 王晶晶, 等. 艾尔兴哺光仪控制青少年、儿童近视疗效分析[J]. 实用中西医结合临床, 2018, 18(10): 63-64, 106. doi: 10.13638/j.issn.1671-4040.2018.10.030 CHEN Peizheng, ZHANG Hongliang, WANG Jingjing, et al. Analysis of therapeutic effect of Aierxing light feeding instrument on myopia control of teenagers and children[J]. Practical Clinical Journal of Integrated Traditional Chinese and Western Medicine, 2018, 18(10): 63-64, 106. doi: 10.13638/j.issn.1671-4040.2018.10.030 [7] Xiong F, Mao T, Liao HF, et al. Orthokeratology and low-intensity laser therapy for slowing the progression of Myopia in children[J]. Biomed Res Int, 2021, 2021: 8915867. doi:10.1155/2021/8915867 [8] Lin ZH, Tao ZY, Kang ZF, et al. A study on the effectiveness of 650-nm red-light feeding instruments in the control of Myopia[J]. Ophthalmic Res, 2023: 641-648. doi:10.1159/000529819 [9] Chen HY, Wang W, Liao Y, et al. Low-intensity red-light therapy in slowing myopic progression and the rebound effect after its cessation in Chinese children: a randomized controlled trial[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2023, 261(2): 575-584. doi:10.1007/s00417-022-05794-4 [10] Kinoshita N, Konno Y, Hamada N, et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results[J]. Jpn J Ophthalmol, 2018, 62(5): 544-553. doi:10.1007/s10384-018-0608-3 [11] Tan Q, Ng AL, Choy BN, et al. One-year results of 0.01% atropine with orthokeratology(AOK)study: a randomised clinical trial[J]. Ophthalmic Physiol Opt, 2020, 40(5): 557-566. doi:10.1111/opo.12722 [12] Chen YX, Xiong RL, Chen X, et al. Efficacy comparison of repeated low-level red light and low-dose atropine for Myopia control: a randomized controlled trial[J]. Transl Vis Sci Technol, 2022, 11(10): 33. doi:10.1167/tvst.11.10.33 [13] Jiang Y, Zhu ZT, Tan XP, et al. Effect of repeated low-level red-light therapy for Myopia control in children: a multicenter randomized controlled trial[J]. Ophthalmology, 2022, 129(5): 509-519. doi:10.1016/j.ophtha.2021.11.023 [14] Tian L, Cao K, Ma DL, et al. Six-month repeated irradiation of 650nm low-level red light reduces the risk of myopia in children: a randomized controlled trial[J].Int Ophthalmol, 2023: 1-10. doi:10.1007/s10792-023-02762-7 [15] Li W, Jiang R, Zhu Y, et al. Effect of 0.01% atropine eye drops on choroidal thickness in myopic children[J]. J Fr Ophtalmol, 2020, 43(9): 862-868. doi:10.1016/j.jfo.2020.04.023 [16] HAO Qian, ZHAO Qi. Changes in subfoveal choroidal thickness in myopic children with 0.01% atropine, orthokeratology, or their combination[J]. Int Ophthalmol, 2021, 41(9): 2963-2971. doi: 10.1007/s10792-021-01855-5 [17] Xiong RL, Zhu ZT, Jiang Y, et al. Longitudinal changes and predictive value of choroidal thickness for Myopia control after repeated low-level red-light therapy[J]. Ophthalmology, 2023, 130(3): 286-296. doi:10.1016/j.ophtha.2022.10.002 [18] Wu JF, Fang WX, Xu HW, et al. The biomechanical response of the Cornea in orthokeratology[J]. Front Bioeng Biotechnol, 2021, 9: 743745. doi:10.3389/fbioe.2021.743745 [19] 陈志, 瞿小妹, 周行涛. 角膜塑形镜对周边屈光度的影响及其作用机制[J]. 中华眼视光学与视觉科学杂志, 2012, 14(2): 74-78. doi: 10.3760/cma.j.issn.1674-845X.2012.02.003 CHEN Zhi, QU Xiaomei, ZHOU Xingtao. Effects of orthokeratology on peripheral refraction and its mechanism[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2012, 14(2): 74-78. doi: 10.3760/cma.j.issn.1674-845X.2012.02.003 [20] Lau JK, Vincent SJ, Cheung SW, et al. Higher-order aberrations and axial elongation in myopic children treated with orthokeratology[J]. Invest Ophthalmol Vis Sci, 2020, 61(2): 22. doi:10.1167/iovs.61.2.22 [21] Prousali E, Haidich AB, Tzamalis A, et al. ‘The role of accommodative function in myopic development: a review.’[J]. Semin Ophthalmol, 2022, 37(4): 455-461. doi:10.1080/08820538.2021.2006724 [22] Batres L, Peruzzo S, Serramito M, et al. Accommodation response and spherical aberration during orthokeratology[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(1): 117-127. doi:10.1007/s00417-019-04504-x [23] Liu GH, Li BQ, Rong H, et al. Axial length shortening and choroid thickening in myopic adults treated with repeated low-level red light[J]. J Clin Med, 2022, 11(24): 7498. doi:10.3390/jcm11247498 [24] Yang WM, Lin F, Li MY, et al. Immediate effect in the retina and choroid after 650 nm low-level red light therapy in children[J]. Ophthalmic Res, 2022: 312-318. doi:10.1159/000527787 [25] Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-E7100. doi:10.1073/pnas.1721443115 [26] Lingham G, MacKey DA, Lucas R, et al. How does spending time outdoors protect against myopia? A review[J]. Br J Ophthalmol, 2020, 104(5): 593-599. doi:10.1136/bjophthalmol-2019-314675 [27] Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia[J]. Exp Eye Res, 2013, 114: 106-119. doi:10.1016/j.exer.2013.02.007 [28] Wang M, Schaeffel F, Jiang B, et al. Effects of light of different spectral composition on refractive development and retinal dopamine in chicks[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4413. doi:10.1167/iovs.18-23880 |
[1] | 张莉苑,钟定娟,王华. 非手术的近视管理方法与脉络膜的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 149-153. |
[2] | 李飏,刘鸫,曹文捷. 红光治疗对近视儿童等效球镜度、眼轴长度及脉络膜厚度影响的Meta分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 74-81. |
[3] | 卢松,夏逸帆,李子晔,魏菁. 无视网膜脱离的儿童Stickler综合征1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 97-101. |
[4] | 胡亚柔,赵欣予,吴桢泉,范梓欣,余震,刘亚玲,陈婷毅,曾键,张国明. 早产儿屈光状态与眼部生物特征的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 144-150. |
[5] | 吴丽丽,曲毅. OCTA在病理性近视脉络膜新生血管应用及其在人工智能的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 144-149. |
[6] | 买尔哈巴·玉素甫,克里木江·阿不拉,丁琳,秦艳莉,陈雪艺. 伴发于后巩膜葡萄肿的高度近视性白内障眼底病变相关研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 107-114. |
[7] | 赵露,田慧文,孟博,王薇,王艳玲. 颈内动脉闭塞患者黄斑区视网膜脉络膜厚度变化分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 72-76. |
[8] | 尤冉,郭笑霄,王薇,陈曦,王艳玲. 高度近视患者黄斑区视网膜劈裂分型与脉络膜特征分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 83-87. |
[9] | 孟博,王康,罗丽华,王艳玲,李爽. 基于WOS数据库的高度近视黄斑裂孔性视网膜脱离研究特征及趋势分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 84-90. |
[10] | 熊翩翩,王佳琳,孙姣,周卓华,王艳玲. 高度近视豹纹状眼底视网膜脉络膜血流改变及相关性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 114-121. |
[11] | 赵泓霄,张晗. 光学放大效应对神经节细胞复合体测量的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 105-109. |
[12] | 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105. |
[13] | 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71. |
[14] | 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107. |
[15] | 李莹. 重视角膜屈光手术操作规范及并发症防治[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 1-6. |
|