山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (5): 52-57.doi: 10.6040/j.issn.1673-3770.0.2023.147

• 论著 • 上一篇    

650 nm低能量红光联合角膜塑形镜控制近视的临床效果

张莉苑,郭颖卓,陈蛟,王华,钟定娟   

  1. 湖南师范大学附属第一医院/湖南省人民医院 眼视光中心, 湖南 长沙 410005
  • 发布日期:2024-09-25

Clinical effect of 650-nm low-level red light in conjunction with orthokeratology in myopia control

ZHANG Liyuan, GUO Yingzhuo, CHEN Jiao, WANG Hua, ZHONG Dingjuan   

  1. Department of Optometry and Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
  • Published:2024-09-25

摘要: 目的 探讨650 nm低能量红光联合角膜塑形镜矫正及延缓近视的临床有效性及安全性。 方法 选取年龄≥7岁的近视患者71例,依据患者自身真实情况,分为佩戴单焦框架眼镜组(对照组)、650 nm低能量红光联合单焦框架眼镜组(红光组)、角膜塑形镜组(OK组)、650 nm低能量红光联合角膜塑形镜组(联合组)4组。入组后1个月、3个月、6个月进行随访,评估眼轴、等效球镜、脉络膜厚度、最佳矫正视力及眼压,并利用光学相干断层扫描成像观察黄斑中心凹6 mm范围的视网膜结构,评估其安全性。采用双因素方差分析、 χ2检验、重复测量方差分析等方法进行数据分析。 结果 观察至6个月时, 对照组、OK组、红光组、联合组眼轴相对于基线期的变化值差异有统计学意义[(0.181±0.104)mm、(0.069±0.108)mm、(-0.130±0.141)mm、(-0.164±0.118)mm, P<0.001],其中联合组控制眼轴的效果最佳。红光组与对照组等效球镜相对于基线期的变化值差异有统计学意义[(0.028±0.274)D、(-0.309±0.193)D, P<0.001]。红光组、OK组、联合组在1个月、3个月、6个月时脉络膜厚度相对于基线期的变化值差异均有统计学意义(均P<0.001),仅联合组在6个月内呈现持续增长的趋势。红光组与联合组黄斑中心凹6 mm范围内视网膜结构层次清晰,未见异常。 结论 650 nm低能量红光联合角膜塑形镜能控制近视进展,两者联用后对近视的控制效果优于单用红光或角膜塑形镜,且未影响视网膜结构及最佳矫正视力。

关键词: 近视, 650 nm低能量红光, 角膜塑形镜, 眼轴, 脉络膜厚度

Abstract: Objective To assess the clinical effectiveness and safety of utilizing a 650-nm low-level red light in combination with orthokeratology for correcting and retarding myopia. Methods A total of 71 patients with myopia aged ≥7 years were carefully selected and categorized into four distinct groups based on their individual condition: patients wearing single-vision spectacles(control group), patients receiving 650-nm low-level red light treatment and wearing single-vision spectacles(red-light group), patients wearing orthokeratology lenses(OK group), and patients receiving 650-nm low-level red light treatment and wearing with orthokeratology lenses(combination group). Follow-up examinations were carried out at 1-, 3-, and 6-month intervals following enrollment to assess various parameters, including axial length, spherical equivalent, choroid thickness, best-corrected visual acuity and intraocular pressure. The safety of the procedure was evaluated using optical coherence tomography to observe retinal structures within a 6-mm range of the macular fovea. Two-factor analysis of variance, χ2 test, and repeated-measures analysis of variance were used to analyze the data. Results At 6 months, the change of axial length relative to the baseline period value difference in the control group, OK group, red-light group and combination group were significant[(0.181±0.104)mm、(0.069±0.108)mm、(-0.130±0.141)mm、(-0.164±0.118)mm, P<0.001]. The combination group exhibited the most effective control over the axial length. Additionally, red-light group and control group in the change of equivalent spherical refractive error relative to the baseline period value difference was significant [(0.028±0.274)D、(-0.309±0.193)D, P<0.001]. The change in choroidal thickness relative to the baseline period value difference in the red-light, OK, and combination groups at 1, 3, and 6 months were also significant(all P<0.001). Only the combination group showed a continuous growth trend for 6 months. The retinal structures of both the red-light and combination groups displayed clarity within a 6-mm range of the macular fovea, and no abnormalities were detected. Conclusion The application of 650-nm low-level red-light in combination with an orthokeratology lens can regulate the progression of myopia. Furthermore, the efficacy of the combination of these two methods surpasses that of either red light or the orthokeratology lens used individually, and did not affect the structure of retina and best corrected visual acuity.

Key words: Myopia, 650-nm low-level red light, Orthokeratology, Axial length, Choroidal thickness

中图分类号: 

  • R778.1+1
[1] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of Myopia and high Myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006
[2] Kaiti R, Shyangbo R, Sharma IP, et al. Review on current concepts of myopia and its control strategies[J]. Int J Ophthalmol, 2021, 14(4): 606-615. doi:10.18240/ijo.2021.04.19
[3] 刘艺, 于明坤, 孙伟, 等. 角膜塑形术控制儿童近视有效性与安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 92-100. doi:10.6040/j.issn.1673-3770.0.2021.037 LIU Yi, YU Mingkun, SUN Wei, et al. The effectiveness and safety of orthokeratology on controlling myopia of children: a meta-analysis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 92-100. doi:10.6040/j.issn.1673-3770.0.2021.037
[4] 赵宏伟, 黄一飞. 光照与近视发生发展的关系[J]. 国际眼科杂志, 2016(1): 74-76. doi:10.3980/j.issn.1672-5123.2016.1.19 ZHAO Hongwei, HUANG Yifei. Relationship between light and the development of myopia[J]. Int Eye Sci, 2016(1): 74-76. doi:10.3980/j.issn.1672-5123.2016.1.19
[5] 朱秋蓉, 刘陇黔. 近视与光照的关系[J]. 四川大学学报(医学版), 2021, 52(6): 901-906. doi:10.12182/20211160205 ZHU Qiurong, LIU Longqian. Relationship between Myopia and light exposure[J]. J Sichuan Univ(Med Sci), 2021, 52(6): 901-906. doi:10.12182/20211160205
[6] 陈培正, 张宏亮, 王晶晶, 等. 艾尔兴哺光仪控制青少年、儿童近视疗效分析[J]. 实用中西医结合临床, 2018, 18(10): 63-64, 106. doi: 10.13638/j.issn.1671-4040.2018.10.030 CHEN Peizheng, ZHANG Hongliang, WANG Jingjing, et al. Analysis of therapeutic effect of Aierxing light feeding instrument on myopia control of teenagers and children[J]. Practical Clinical Journal of Integrated Traditional Chinese and Western Medicine, 2018, 18(10): 63-64, 106. doi: 10.13638/j.issn.1671-4040.2018.10.030
[7] Xiong F, Mao T, Liao HF, et al. Orthokeratology and low-intensity laser therapy for slowing the progression of Myopia in children[J]. Biomed Res Int, 2021, 2021: 8915867. doi:10.1155/2021/8915867
[8] Lin ZH, Tao ZY, Kang ZF, et al. A study on the effectiveness of 650-nm red-light feeding instruments in the control of Myopia[J]. Ophthalmic Res, 2023: 641-648. doi:10.1159/000529819
[9] Chen HY, Wang W, Liao Y, et al. Low-intensity red-light therapy in slowing myopic progression and the rebound effect after its cessation in Chinese children: a randomized controlled trial[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2023, 261(2): 575-584. doi:10.1007/s00417-022-05794-4
[10] Kinoshita N, Konno Y, Hamada N, et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results[J]. Jpn J Ophthalmol, 2018, 62(5): 544-553. doi:10.1007/s10384-018-0608-3
[11] Tan Q, Ng AL, Choy BN, et al. One-year results of 0.01% atropine with orthokeratology(AOK)study: a randomised clinical trial[J]. Ophthalmic Physiol Opt, 2020, 40(5): 557-566. doi:10.1111/opo.12722
[12] Chen YX, Xiong RL, Chen X, et al. Efficacy comparison of repeated low-level red light and low-dose atropine for Myopia control: a randomized controlled trial[J]. Transl Vis Sci Technol, 2022, 11(10): 33. doi:10.1167/tvst.11.10.33
[13] Jiang Y, Zhu ZT, Tan XP, et al. Effect of repeated low-level red-light therapy for Myopia control in children: a multicenter randomized controlled trial[J]. Ophthalmology, 2022, 129(5): 509-519. doi:10.1016/j.ophtha.2021.11.023
[14] Tian L, Cao K, Ma DL, et al. Six-month repeated irradiation of 650nm low-level red light reduces the risk of myopia in children: a randomized controlled trial[J].Int Ophthalmol, 2023: 1-10. doi:10.1007/s10792-023-02762-7
[15] Li W, Jiang R, Zhu Y, et al. Effect of 0.01% atropine eye drops on choroidal thickness in myopic children[J]. J Fr Ophtalmol, 2020, 43(9): 862-868. doi:10.1016/j.jfo.2020.04.023
[16] HAO Qian, ZHAO Qi. Changes in subfoveal choroidal thickness in myopic children with 0.01% atropine, orthokeratology, or their combination[J]. Int Ophthalmol, 2021, 41(9): 2963-2971. doi: 10.1007/s10792-021-01855-5
[17] Xiong RL, Zhu ZT, Jiang Y, et al. Longitudinal changes and predictive value of choroidal thickness for Myopia control after repeated low-level red-light therapy[J]. Ophthalmology, 2023, 130(3): 286-296. doi:10.1016/j.ophtha.2022.10.002
[18] Wu JF, Fang WX, Xu HW, et al. The biomechanical response of the Cornea in orthokeratology[J]. Front Bioeng Biotechnol, 2021, 9: 743745. doi:10.3389/fbioe.2021.743745
[19] 陈志, 瞿小妹, 周行涛. 角膜塑形镜对周边屈光度的影响及其作用机制[J]. 中华眼视光学与视觉科学杂志, 2012, 14(2): 74-78. doi: 10.3760/cma.j.issn.1674-845X.2012.02.003 CHEN Zhi, QU Xiaomei, ZHOU Xingtao. Effects of orthokeratology on peripheral refraction and its mechanism[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2012, 14(2): 74-78. doi: 10.3760/cma.j.issn.1674-845X.2012.02.003
[20] Lau JK, Vincent SJ, Cheung SW, et al. Higher-order aberrations and axial elongation in myopic children treated with orthokeratology[J]. Invest Ophthalmol Vis Sci, 2020, 61(2): 22. doi:10.1167/iovs.61.2.22
[21] Prousali E, Haidich AB, Tzamalis A, et al. ‘The role of accommodative function in myopic development: a review.’[J]. Semin Ophthalmol, 2022, 37(4): 455-461. doi:10.1080/08820538.2021.2006724
[22] Batres L, Peruzzo S, Serramito M, et al. Accommodation response and spherical aberration during orthokeratology[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(1): 117-127. doi:10.1007/s00417-019-04504-x
[23] Liu GH, Li BQ, Rong H, et al. Axial length shortening and choroid thickening in myopic adults treated with repeated low-level red light[J]. J Clin Med, 2022, 11(24): 7498. doi:10.3390/jcm11247498
[24] Yang WM, Lin F, Li MY, et al. Immediate effect in the retina and choroid after 650 nm low-level red light therapy in children[J]. Ophthalmic Res, 2022: 312-318. doi:10.1159/000527787
[25] Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-E7100. doi:10.1073/pnas.1721443115
[26] Lingham G, MacKey DA, Lucas R, et al. How does spending time outdoors protect against myopia? A review[J]. Br J Ophthalmol, 2020, 104(5): 593-599. doi:10.1136/bjophthalmol-2019-314675
[27] Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia[J]. Exp Eye Res, 2013, 114: 106-119. doi:10.1016/j.exer.2013.02.007
[28] Wang M, Schaeffel F, Jiang B, et al. Effects of light of different spectral composition on refractive development and retinal dopamine in chicks[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4413. doi:10.1167/iovs.18-23880
[1] 张莉苑,钟定娟,王华. 非手术的近视管理方法与脉络膜的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 149-153.
[2] 李飏,刘鸫,曹文捷. 红光治疗对近视儿童等效球镜度、眼轴长度及脉络膜厚度影响的Meta分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 74-81.
[3] 卢松,夏逸帆,李子晔,魏菁. 无视网膜脱离的儿童Stickler综合征1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 97-101.
[4] 胡亚柔,赵欣予,吴桢泉,范梓欣,余震,刘亚玲,陈婷毅,曾键,张国明. 早产儿屈光状态与眼部生物特征的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 144-150.
[5] 吴丽丽,曲毅. OCTA在病理性近视脉络膜新生血管应用及其在人工智能的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 144-149.
[6] 买尔哈巴·玉素甫,克里木江·阿不拉,丁琳,秦艳莉,陈雪艺. 伴发于后巩膜葡萄肿的高度近视性白内障眼底病变相关研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 107-114.
[7] 赵露,田慧文,孟博,王薇,王艳玲. 颈内动脉闭塞患者黄斑区视网膜脉络膜厚度变化分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 72-76.
[8] 尤冉,郭笑霄,王薇,陈曦,王艳玲. 高度近视患者黄斑区视网膜劈裂分型与脉络膜特征分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 83-87.
[9] 孟博,王康,罗丽华,王艳玲,李爽. 基于WOS数据库的高度近视黄斑裂孔性视网膜脱离研究特征及趋势分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 84-90.
[10] 熊翩翩,王佳琳,孙姣,周卓华,王艳玲. 高度近视豹纹状眼底视网膜脉络膜血流改变及相关性分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 114-121.
[11] 赵泓霄,张晗. 光学放大效应对神经节细胞复合体测量的影响[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 105-109.
[12] 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105.
[13] 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71.
[14] 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107.
[15] 李莹. 重视角膜屈光手术操作规范及并发症防治[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!