Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (6): 118-122.doi: 10.6040/j.issn.1673-3770.0.2019.582

Previous Articles     Next Articles

Elucidating the role and mechanism of Tim-3 in allergic rhinitis

XIANG Liulan1, YE Yuanhang1Overview,JIANG Luyun2, LIU Yang2Guidance   

  1. 1. Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China;
    2. Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan,  China
  • Published:2021-01-11

Abstract: Allergic rhinitis(AR)is a chronic, non-specific inflammatory disease of the nasal mucosa. As a Type I hypersensitivity reaction, it leads to several diseases and labor losses and is a global health problem that burdens society. Different proteins, including Tim-3, regulate the immune cells that are involved in the pathogenesis of AR. Tim-3 has been demonstrated to be involved in immune cell expression and has a regulatory effect on several immune responses. Thus, it is also closely related to disorders of the immune system. Presently, the treatment options and medications for AR are limited, and it require more effective therapeutic interventions. While there are several studies on Tim-3's mechanism of action in AR, a review of the available literature is lacking. This article aims to enrich the body of research on the immune regulation mechanism behind AR and provide new ideas for its treatment.

Key words: Allergic rhinitis, T cell immunoglobulin domain and mucin domain protein-3, Pathogenesis, Review

CLC Number: 

  • R765
[1] 刘小涵, 张小兵. PU.1转录因子和辅助性Th9细胞与变应性鼻炎[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 139-143. doi:10.6040/j.issn.1673-3770.0.2018.456. LIU Xiaohan, ZHANG Xiaobing. PU.1 transcription factor and helper Th9 cells with allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 139-143. doi:10.6040/j.issn.1673-3770.0.2018.456.
[2] Bro(·overz)ek JL, Bousquet J, Baena-Cagnani CE, et al. Allergic rhinitis and its impact on asthma(ARIA)guidelines: 2010 revision[J]. J Allergy Clin Immunol, 2010, 126(3): 466-476. doi:10.1016/j.jaci.2010.06.047.
[3] Gaudin RA, Hoehle LP, Birkelbach MA, et al. The association between allergic rhinitis control and sleep quality[J]. HNO, 2017, 65(12):987-992. doi: 10.1007/s00106-017-0398-9.
[4] McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr(an airway hyperreactivity regulatory locus)and the linked Tim gene family[J]. Nat Immunol, 2001, 2(12): 1109-1116. doi:10.1038/ni739.
[5] Anderson AC, Joller N, Kuchroo VK. Lag-3, tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation[J]. Immunity, 2016, 44(5):989-1004. doi:10.1016/j.immuni.2016.05.001.
[6] Joller N, Kuchroo VK. Tim-3, lag-3, and TIGIT[J]. Curr Top Microbiol Immunol, 2017, 410: 127-156. doi:10.1007/82_2017_62.
[7] Melum GR, Farkas L, Scheel C, et al. A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa[J]. J Allergy Clin Immunol, 2014, 134(3): 613-621.e7. doi:10.1016/j.jaci.2014.05.010.
[8] Liu ZQ, Li MG, Geng XR, et al. Vitamin D regulates immunoglobulin mucin domain molecule-4 expression in dendritic cells[J]. Clin Exp Allergy, 2017, 47(5): 656-664. doi:10.1111/cea.12894.
[9] 程雷, 钱俊俊, 田慧琴. 变应性鼻炎研究的若干进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021. CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021.
[10] 焦沃尔. Notch信号在变应性鼻炎发病中的作用及机制研究进展[J]. 疑难病杂志, 2018, 17(8): 860-864. doi:10.3969/j.issn.1671-6450.2018.08.026. JIAO Wo'er. The research progress of function and mechanism of Notch signaling pathway in allergy rhinitis[J]. Chinese Journal of Difficult and Complicated Cases, 2018, 17(8): 860-864. doi:10.3969/j.issn.1671-6450.2018.08.026.
[11] Steelant B, Seys SF, van Gerven L, et al. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis[J]. J Allergy Clin Immunol, 2018, 141(3): 951-963.e8. doi:10.1016/j.jaci.2017.08.039.
[12] Morikawa T, Fukuoka A, Matsushita K, et al. Activation of group 2 innate lymphoid cells exacerbates and confers corticosteroid resistance to mouse nasal type 2 inflammation[J]. Int Immunol, 2017, 29(5): 221-233. doi:10.1093/intimm/dxx030.
[13] Huang F, Yin JN, Wang HB, et al. Association of imbalance of effector T cells and regulatory cells with the severity of asthma and allergic rhinitis in children[J]. Allergy Asthma Proc, 2017,38(6): 70-77. doi:10.2500/aap.2017.38.4076.
[14] Zhang LX, Liu T. Treg influences the pathogenesis of allergic rhinitis through TICAM-1 pathway[J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2018, 32(22): 1763-1766. doi:10.13201/j.issn.1001-1781.2018.22.020.
[15] Oboki K, Ohno T, Saito H, et al. Th17 and allergy[J]. Allergol Int, 2008, 57(2): 121-134. doi:10.2332/allergolint.r-07-160.
[16] Gu ZW, Wang YX, Cao ZW. Neutralization of interleukin-9 ameliorates symptoms of allergic rhinitis by reducing Th2, Th9, and Th17 responses and increasing the Treg response in a murine model[J]. Oncotarget, 2017, 8(9): 14314-14324. doi:10.18632/oncotarget.15177.
[17] Liu Y, Zeng M, Liu Z. Th17 response and its regulation in inflammatory upper airway diseases[J]. Clin Exp Allergy, 2015, 45(3): 602-612. doi:10.1111/cea.12378.
[18] Kim JH, Jang YJ. Role of natural killer cells in airway inflammation[J]. Allergy Asthma Immunol Res, 2018, 10(5): 448. doi:10.4168/aair.2018.10.5.448.
[19] Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510. doi:10.1038/ni1582.
[20] Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells[J]. Science, 2011, 331(6013):44-49. doi: 10.1126/science.1198687.
[21] Scordamaglia F, Balsamo M, Scordamaglia A, et al. Perturbations of natural killer cell regulatory functions in respiratory allergic diseases[J]. J Allergy Clin Immunol, 2008, 121(2): 479-485. doi:10.1016/j.jaci.2007.09.047.
[22] Pawlak EA, Noah TL, Zhou HB, et al. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randomized controlled trial of exposure in allergic rhinitics[J]. Part Fibre Toxicol, 2015, 13: 24. doi:10.1186/s12989-016-0135-7.
[23] Chevalier MF, Bohner P, Pieraerts C, et al. Immunoregulation of dendritic cell subsets by inhibitory receptors in urothelial cancer[J]. Eur Urol, 2017, 71(6): 854-857. doi:10.1016/j.eururo.2016.10.009.
[24] Hastings WD, Anderson DE, Kassam N, et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines[J]. Eur J Immunol, 2009, 39(9): 2492-2501. doi:10.1002/eji.200939274.
[25] Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol, 2005, 6(12): 1245-1252. doi:10.1038/ni1271.
[26] Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J]. Nat Immunol, 2012, 13(9): 832-842. doi:10.1038/ni.2376.
[27] 张峰波, 员静, 朱玥洁, 等. 泡球蚴感染小鼠中Tim-3对Th1/Th2细胞因子平衡的影响作用研究[J]. 中国免疫学杂志, 2019, 35(3): 274-277, 281. doi:10.3969/j.issn.1000-484X.2019.03.004. ZHANG Fengbo, YUAN Jing, ZHU Yuejie, et al. Study of effects of Tim-3 on Th1/Th2 cytokine balance in mice infected with alveolar hydatid[J]. Chinese Journal of Immunology, 2019, 35(3): 274-277,281. doi:10.3969/j.issn.1000-484X.2019.03.004.
[28] 韩佳利, 任重, 姜学钧. Tim-3在变应性鼻炎小鼠鼻黏膜中的表达及其作用的实验研究[J]. 中国医科大学学报, 2008, 37(4): 439-441. doi:10.3969/j.issn.0258-4646.2008.04.003. HAN Jiali, REN Zhong, JIANG Xuejun. Expression and significance of tim-3 in mouse NasalM ucosa with A llergic rhinitis[J]. Journal of China Medical University, 2008, 37(4): 439-441. doi:10.3969/j.issn.0258-4646.2008.04.003.
[29] Fei Tang, Fukun Wang, Liyun An, et al. Upregulation of Tim-3 on CD4(+)T cells is associated with Th1/Th2 imbalance in patients with allergic asthma[J]. Int J Clin Exp Med, 2015,8(3):3809-3816.
[30] Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation[J]. J Allergy Clin Immunol, 2014, 134(3): 509-520. doi:10.1016/j.jaci.2014.05.049.
[31] Phong BL, Avery L, Sumpter TL, et al. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation[J]. J Exp Med, 2015, 212(13): 2289-2304. doi:10.1084/jem.20150388.
[32] Gautron AS, Dominguez-Villar M, de Marcken M, et al. Enhanced suppressor function of TIM-3+FoxP3+regulatory T cells[J]. Eur J Immunol, 2014, 44(9): 2703-2711. doi:10.1002/eji.201344392.
[33] Wang JY, Li C, Fu JJ, et al. Tim-3 regulates inflammatory cytokine expression and Th17 cell response induced by monocytes from patients with chronic hepatitis B[J]. Scand J Immunol, 2019, 89(5): e12755. doi:10.1111/sji.12755.
[34] Xu LY, Huang YY, Tan LL, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J]. Int Immunopharmacol, 2015, 29(2): 635-641. doi:10.1016/j.intimp.2015.09.017.
[35] Hou HY, Liu WY, Wu SJ, et al. Tim-3 negatively mediates natural killer cell function in LPS-induced endotoxic shock[J]. PLoS One, 2014, 9(10): e110585. doi:10.1371/journal.pone.0110585.
[36] Gleason MK, Lenvik TR, McCullar V, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9[J]. Blood, 2012,119(13): 3064-3072. doi:10.1182/blood-2011-06-360321.
[37] Ndhlovu LC, Lopez-Vergès S, Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J]. Blood, 2012, 119(16): 3734-3743. doi:10.1182/blood-2011-11-392951.
[38] Kim N, Kim HS. Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells[J]. Front Immunol, 2018,9: 2041. doi:10.3389/fimmu.2018.02041.
[39] Gleason MK, Lenvik TR, McCullar V, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9[J]. Blood, 2012,119(13): 3064-3072. doi:10.6040/j.issn.1673-3770.0.2019.618.
[1] WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124.
[2] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[3] LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91.
[4] NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115.
[5] LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122.
[6] LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129.
[7] LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146.
[8] GONG Xiaoyang, CHENG Lei. Analysis of proportion of outpatients with allergic rhinitis during the coronavirus infectious disease 2019 pandemic [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 245-255.
[9] ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259.
[10] LU Weili, JIANG Tao, LI Xianhua. Analysis of sIgE in polysensitized children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 260-265.
[11] HUANG Kaiyue, LI Xueqing, HAN Gouxin, ZHANG Qinxiu. Meta-analysis of acupoint catgut embedding in the treatment of allergic rhinitis based on the theory of “lung and spleen” [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 266-274.
[12] ZHU Zhengru, ZHANG Xiaobing. Meta-analysis of the curative effect of traditional Chinese medicine decoction combined with conventional western medicine on allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 281-289.
[13] HAN Yingying,LI Yanzhong. Obstructive sleep apnea hypopnea syndrome and subclinical arteriosclerosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 126-132.
[14] PANG Chong, BIAN Sainan, ZHANG Bing, YIN Xu, LU Yingxia, YE Pengfei, WANG Zhan, ZHAO Jing, GAO Yan, GUAN Kai. Short-term effect of Dermatophagoides farinae specific sublingual immunotherapy for children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 70-74.
[15] WANG Fei, LIU Yuying, XIAO Qiyi, DING Jian, GAO Shang, MAO Wei. A study on the associations between psychological factors and allergic rhinitis among residents [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 28-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN Bin,WANGHui-ge . Functional endoscopic sinus surgery, FESS[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 481 -487 .
[2] GONG Lei,SUN Jie,XUE Zi-chao,LI Jing-hua,XUE Wei-guo . DNA analysis of the cell cycle in sino-nasal neoplasm[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 193 -195 .
[3] CHEN Wen-wen . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 472 -472 .
[4] LUAN Jiangang,LIANG Chuanyu,WEN Yanjun,LI Jiong . Construction of RNAi expressing plasmid vector of pSIRENshuttle for EGFR gene silencing[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 4 -8 .
[5] MA Jing, ZHONG Cui-ping . Surgical method for nasopharyngeal fibroangioma encroaching on fossa pterygopalatina: with a report of 5 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 30 -32 .
[6] LIU Qiang-he,LUO Xiang-lin,GENG Wan-ping,CHEN Chen,LEI Xun,LIU Fang-xian,DENG Ming . Age-related spiral ganglion neuron damages and hearing loss in senescence accelerated mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 215 -217 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 223 -226 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 246 -247 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 250 -252 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 260 -262 .