Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 78-83.doi: 10.6040/j.issn.1673-3770.0.2021.583
Previous Articles Next Articles
HUANG Danyi, ZHANG TingOverview,CHEN Jing, ZHANG Wei
CLC Number:
[1] Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients[J]. J Allergy Clin Immunol, 2017, 139(6): 1736-1751. doi:10.1016/j.jaci.2017.04.005. [2] Moens E, Veldhoen M. Epithelial barrier biology: good fences make good neighbours[J]. Immunology, 2012, 135(1): 1-8. doi:10.1111/j.1365-2567.2011.03506.x. [3] Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4[J]. J Allergy Clin Immunol, 2012, 130(5): 1087-1096.e10. doi:10.1016/j.jaci.2012.05.052. [4] Pothoven KL, Norton JE, Hulse KE, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease[J]. J Allergy Clin Immunol, 2015, 136(3): 737-746.e4. doi:10.1016/j.jaci.2015.01.043. [5] Toppila-Salmi S, van Drunen CM, Fokkens WJ, et al. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis[J]. Curr Allergy Asthma Rep, 2015, 15(2): 495. doi:10.1007/s11882-014-0495-8. [6] Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation[J]. J Allergy Clin Immunol, 2014, 134(3): 509-520. doi:10.1016/j.jaci.2014.05.049. [7] Lam K, Schleimer R, Kern RC. The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses[J]. Curr Allergy Asthma Rep, 2015, 15(7): 41. doi:10.1007/s11882-015-0540-2. [8] Kern RC, Conley DB, Walsh W, et al. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis[J]. Am J Rhinol, 2008, 22(6): 549-559. doi:10.2500/ajr.2008.22.3228. [9] Zhang N, van Crombruggen K, Gevaert E, et al. Barrier function of the nasal mucosa in health and type-2 biased airway diseases[J]. Allergy, 2016, 71(3): 295-307. doi:10.1111/all.12809. [10] Stevens WW, Schleimer RP, Kern RC. Chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol Pract, 2016, 4(4): 565-572. doi:10.1016/j.jaip.2016.04.012. [11] Gohy S, Hupin C, Ladjemi MZ, et al. Key role of the epithelium in chronic upper airways diseases[J]. Clin Exp Allergy, 2020, 50(2): 135-146. doi:10.1111/cea.13539. [12] Khalmuratova R, Park JW, Shin HW. Immune cell responses and mucosal barrier disruptions in chronic rhinosinusitis[J]. Immune Netw, 2017, 17(1): 60-67. doi:10.4110/in.2017.17.1.60. [13] Lambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization[J]. J Allergy Clin Immunol, 2014, 134(3): 499-507. doi:10.1016/j.jaci.2014.06.036. [14] Lambrecht BN, Hammad H. The airway epithelium in asthma[J]. Nat Med, 2012, 18(5): 684-692. doi:10.1038/nm.2737. [15] Niessen CM. Tight junctions/adherens junctions: basic structure and function[J]. J Invest Dermatol, 2007, 127(11): 2525-2532. doi:10.1038/sj.jid.5700865. [16] Kojima T, Go M, Takano K, et al. Regulation of tight junctions in upper airway epithelium[J]. Biomed Res Int, 2013, 2013: 947072. doi:10.1155/2013/947072. [17] Zihni C, Mills C, Matter K, et al. Tight junctions: from simple barriers to multifunctional molecular gates[J]. Nat Rev Mol Cell Biol, 2016, 17(9): 564-580. doi:10.1038/nrm.2016.80. [18] Balda MS, Matter K. Tight junctions and the regulation of gene expression[J]. Biochim Biophys Acta, 2009, 1788(4): 761-767. doi:10.1016/j.bbamem.2008.11.024. [19] Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions?[J]. Nat Rev Immunol, 2021, 21(11): 739-751. doi:10.1038/s41577-021-00538-7. [20] Pothoven KL, Schleimer RP. The barrier hypothesis and Oncostatin M: restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease[J]. Tissue Barriers, 2017, 5(3): e1341367. doi:10.1080/21688370.2017.1341367. [21] Bernstein JM, Gorfien J, Noble B, et al. Nasal polyposis: immunohistochemistry and bioelectrical findings(a hypothesis for the development of nasal polyps)[J]. J Allergy Clin Immunol, 1997, 99(2): 165-175. doi:10.1016/s0091-6749(97)70091-5. [22] Rogers GA, den Beste K, Parkos CA, et al. Epithelial tight junction alterations in nasal polyposis[J]. Int Forum Allergy Rhinol, 2011, 1(1): 50-54. doi:10.1002/alr.20014. [23] Meng J, Zhou P, Liu YF, et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling[J]. PLoS One, 2013, 8(12): e82373. doi:10.1371/journal.pone.0082373. [24] Huang ZQ, Liu J, Ong HH, et al. Interleukin-13 alters tight junction proteins expression thereby compromising barrier function and dampens rhinovirus induced immune responses in nasal epithelium[J]. Front Cell Dev Biol, 2020, 8: 572749. doi:10.3389/fcell.2020.572749. [25] 史丽丽, 陆翔, 刘争, 等. 上皮性钙黏蛋白与闭锁蛋白在慢性鼻-鼻窦炎上皮的表达及意义[J]. 临床耳鼻咽喉头颈外科杂志, 2012, 26(11): 499-501, 506. doi:10.13201/j.issn.1001-1781.2012.11.008. SHI Lili, LU Xiang, LIU Zheng, et al. The expression of E-cadherin and occludin in epithelium of chronic rhinosinositis and its significant[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2012, 26(11): 499-501, 506. doi:10.13201/j.issn.1001-1781.2012.11.008. [26] Li Y, Wang XD, Wang RH, et al. The expression of epithelial intercellular junctional proteins in the sinonasal tissue of subjects with chronic rhinosinusitis: a histopathologic study[J]. ORL J Otorhinolaryngol Relat Spec, 2014, 76(2): 110-119. doi:10.1159/000362246. [27] Jiao J, Wang M, Duan S, et al. Transforming growth factor-β1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2018, 141(3): 1160-1163.e9. doi:10.1016/j.jaci.2017.08.045. [28] Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis[J]. J Clin Invest, 2003, 112(12): 1776-1784. doi:10.1172/JCI20530. [29] Das V, Bhattacharya S, Chikkaputtaiah C, et al. The basics of epithelial-mesenchymal transition(EMT): a study from a structure, dynamics, and functional perspective[J]. J Cell Physiol, 2019:5. doi:10.1002/jcp.28160. [30] Thiery JP, Acloque H, Huang RYJ, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890. doi:10.1016/j.cell.2009.11.007. [31] Huang RYJ, Guilford P, Thiery JP. Early events in cell adhesion and polarity during epithelial-mesenchymal transition[J]. J Cell Sci, 2012, 125(Pt 19): 4417-4422. doi:10.1242/jcs.099697. [32] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196. doi:10.1038/nrm3758. [33] Bartis D, Mise N, Mahida RY, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? [J]. Thorax, 2014, 69(8): 760-765. doi:10.1136/thoraxjnl-2013-204608. [34] Kagalwalla AF, Akhtar N, Woodruff SA, et al. Eosinophilic esophagitis: epithelial mesenchymal transition contributes to esophageal remodeling and reverses with treatment[J]. J Allergy Clin Immunol, 2012, 129(5): 1387-1396.e7. doi:10.1016/j.jaci.2012.03.005. [35] 高云博, 张媛, 张罗. 上皮-间质转化与慢性鼻窦炎的研究进展[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 231-236.doi:10.3760/cma.j.issn.1673-0860.2019.03.015. GAO Yunbo, ZHANG Yuan, ZHANG Luo. Advance in epithelial-mesenchymal transition in chronic rhinosinusitis[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 231-236. doi:10.3760/cma.j.issn.1673-0860.2019.03.015. [36] Könnecke M, Burmeister M, Pries R, et al. Epithelial-mesenchymal transition in chronic rhinosinusitis: differences revealed between epithelial cells from nasal polyps and inferior turbinates[J]. Arch Immunol Ther Exp(Warsz), 2017, 65(2): 157-173. doi:10.1007/s00005-016-0409-7. [37] Yan B, Wang Y, Li Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2019, 9(3): 270-280. doi:10.1002/alr.22243. [38] Yang NN, Cheng H, Mo Q, et al. miR1555p downregulation inhibits epithelialtomesenchymal transition by targeting SIRT1 in human nasal epithelial cells[J]. Mol Med Rep, 2020, 22(5): 3695-3704. doi:10.3892/mmr.2020.11468. [39] Zhang T, Zhou Y, You B, et al. miR-30a-5p inhibits epithelial-to-mesenchymal transition by targeting CDK6 in nasal polyps[J]. Am J Rhinol Allergy, 2021, 35(2): 152-163. doi:10.1177/1945892420939814. [40] Shikani AH, Sidhaye VK, Basaraba RJ, et al. Mucosal expression of aquaporin 5 and epithelial barrier proteins in chronic rhinosinusitis with and without nasal polyps[J]. Am J Otolaryngol, 2014, 35(3): 377-383. doi:10.1016/j.amjoto.2013.11.011. [41] Yukitatsu Y, Hata M, Yamanegi K, et al. Decreased expression of VE-cadherin and claudin-5 and increased phosphorylation of VE-cadherin in vascular endothelium in nasal polyps[J]. Cell Tissue Res, 2013, 352(3): 647-657. doi:10.1007/s00441-013-1583-0. [42] Chen B, Shaari J, Claire SE, et al. Altered sinonasal ciliary dynamics in chronic rhinosinusitis[J]. Am J Rhinol, 2006, 20(3): 325-329. doi:10.2500/ajr.2006.20.2870. [43] Gudis D, Zhao KQ, Cohen NA. Acquired Cilia dysfunction in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2012, 26(1): 1-6. doi:10.2500/ajra.2012.26.3716. [44] Jiao J, Duan S, Meng N, et al. Role of IFN-γ, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2016, 46(3): 449-460. doi:10.1111/cea.12644. [45] London NR Jr, Tharakan A, Ramanathan M Jr. The role of innate immunity and aeroallergens in chronic rhinosinusitis[J]. Adv Otorhinolaryngol, 2016, 79: 69-77. doi:10.1159/000445132. [46] Henriquez OA, den Beste K, Hoddeson EK, et al. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions[J]. Int Forum Allergy Rhinol, 2013, 3(8): 630-635. doi:10.1002/alr.21168. [47] London NR Jr, Tharakan A, Lane AP, et al. Nuclear erythroid 2-related factor 2 activation inhibits house dust mite-induced sinonasal epithelial cell barrier dysfunction[J]. Int Forum Allergy Rhinol, 2017, 7(5): 536-541. doi:10.1002/alr.21916. [48] Rusznak C, Sapsford RJ, Devalia JL, et al. Cigarette smoke potentiates house dust mite allergen-induced increase in the permeability of human bronchial epithelial cells in vitro[J]. Am J Respir Cell Mol Biol, 1999, 20(6): 1238-1250. doi:10.1165/ajrcmb.20.6.3226. [49] Rusznak C, Mills PR, Devalia JL, et al. Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease[J]. Am J Respir Cell Mol Biol, 2000, 23(4): 530-536. doi:10.1165/ajrcmb.23.4.3959. [50] Tharakan A, Halderman AA, Lane AP, et al. Reversal of cigarette smoke extract-induced sinonasal epithelial cell barrier dysfunction through Nrf2 Activation[J]. Int Forum Allergy Rhinol, 2016, 6(11): 1145-1150. doi:10.1002/alr.21827. [51] Zhao RW, Guo ZQ, Zhang RX, et al. Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation[J]. J Appl Toxicol, 2018, 38(5): 678-687. doi:10.1002/jat.3573. [52] Hariri BM, Cohen NA. New insights into upper airway innate immunity[J]. Am J Rhinol Allergy, 2016, 30(5): 319-323. doi:10.2500/ajra.2016.30.4360. [53] Rudack C, Steinhoff M, Mooren F, et al. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium[J]. Clin Exp Allergy, 2007, 37(7): 1009-1022. doi:10.1111/j.1365-2222.2007.02686.x. [54] Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease[J]. Physiol Rev, 2004, 84(2): 579-621. doi:10.1152/physrev.00028.2003. [55] Altunbulakli C, Costa R, Lan F, et al. Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps[J]. J Allergy Clin Immunol, 2018, 142(2): 665-668.e8. doi:10.1016/j.jaci.2018.01.046. [56] Martens K, Seys SF, Alpizar YA, et al. Staphylococcus aureus enterotoxin B disrupts nasal epithelial barrier integrity[J]. Clin Exp Allergy, 2021, 51(1): 87-98. doi:10.1111/cea.13760. [57] Sajjan U, Wang Q, Zhao Y, et al. Rhinovirus disrupts the barrier function of polarized airway epithelial cells[J]. Am J Respir Crit Care Med, 2008, 178(12): 1271-1281. doi:10.1164/rccm.200801-136OC. [58] Banyer JL, Hamilton NH, Ramshaw IA, et al. Cytokines in innate and adaptive immunity[J]. Rev Immunogenet, 2000, 2(3): 359-373. [59] 慕婷婷, 杨玉娟, 张宇, 等. IL-36在慢性鼻-鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 114-118. doi:10.6040/j.issn.1673-3770.0.2020.146. MU Tingting, YANG Yujuan, ZHANG Yu, et al. Research progress of IL-36 in chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 114-118.doi:10.6040/j.issn.1673-3770.0.2020.146. [60] Wise SK, Laury AM, Katz EH, et al. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression[J]. Int Forum Allergy Rhinol, 2014, 4(5): 361-370. doi:10.1002/alr.21298. [61] Wang CS, Yan B, Zhang L. The epithelium-derived inflammatory mediators of chronic rhinosinusitis with nasal polyps[J]. Expert Rev Clin Immunol, 2020, 16(3): 293-310. doi:10.1080/1744666X.2020.1723417. [62] Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia[J]. Physiol Rev, 1996, 76(3): 839-885. doi:10.1152/physrev.1996.76.3.839. [63] Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis[J]. BMB Rep, 2018, 51(2): 59-64. doi:10.5483/bmbrep.2018.51.2.014. [64] 郑静, 魏欣, 粘家斌, 等. 低氧诱导鼻黏膜上皮细胞释放高迁移率族蛋白1促进上皮屏障损伤[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(15): 1178-1181. doi:10.13201/j.issn.1001-1781.2017.15.009. ZHENG Jing, WEI Xin, ZHAN Jiabin, et al. High mobility group box1 contributes to hypoxia-induced barrier dysfunction of nasal epithelial cells[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2017, 31(15): 1178-1181. doi:10.13201/j.issn.1001-1781.2017.15.009. [65] Shin HW, Cho K, Kim DW, et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition[J]. Am J Respir Crit Care Med, 2012, 185(9): 944-954. doi:10.1164/rccm.201109-1706OC. |
[1] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[2] | YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29. |
[3] | LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35. |
[4] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[5] | WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49. |
[6] | YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55. |
[7] | GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63. |
[8] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[9] | QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77. |
[10] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
[11] | YU Longgang,JIANG Yan. Research progress on the correlation between nasal bacterial microbiome and chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 92-97. |
[12] | CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109. |
[13] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
[14] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
[15] | LIU Houjun, ZHANG Qian, CHENG You, XUE Fei, XU Li, WU Minghai. Relationships between RANTES gene polymorphisms and chronic sinusitis with bilateral nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 165-170. |
|