Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (6): 118-122.doi: 10.6040/j.issn.1673-3770.0.2019.582
Previous Articles Next Articles
XIANG Liulan1, YE Yuanhang1Overview,JIANG Luyun2, LIU Yang2Guidance
CLC Number:
[1] 刘小涵, 张小兵. PU.1转录因子和辅助性Th9细胞与变应性鼻炎[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 139-143. doi:10.6040/j.issn.1673-3770.0.2018.456. LIU Xiaohan, ZHANG Xiaobing. PU.1 transcription factor and helper Th9 cells with allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 139-143. doi:10.6040/j.issn.1673-3770.0.2018.456. [2] Bro(·overz)ek JL, Bousquet J, Baena-Cagnani CE, et al. Allergic rhinitis and its impact on asthma(ARIA)guidelines: 2010 revision[J]. J Allergy Clin Immunol, 2010, 126(3): 466-476. doi:10.1016/j.jaci.2010.06.047. [3] Gaudin RA, Hoehle LP, Birkelbach MA, et al. The association between allergic rhinitis control and sleep quality[J]. HNO, 2017, 65(12):987-992. doi: 10.1007/s00106-017-0398-9. [4] McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr(an airway hyperreactivity regulatory locus)and the linked Tim gene family[J]. Nat Immunol, 2001, 2(12): 1109-1116. doi:10.1038/ni739. [5] Anderson AC, Joller N, Kuchroo VK. Lag-3, tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation[J]. Immunity, 2016, 44(5):989-1004. doi:10.1016/j.immuni.2016.05.001. [6] Joller N, Kuchroo VK. Tim-3, lag-3, and TIGIT[J]. Curr Top Microbiol Immunol, 2017, 410: 127-156. doi:10.1007/82_2017_62. [7] Melum GR, Farkas L, Scheel C, et al. A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa[J]. J Allergy Clin Immunol, 2014, 134(3): 613-621.e7. doi:10.1016/j.jaci.2014.05.010. [8] Liu ZQ, Li MG, Geng XR, et al. Vitamin D regulates immunoglobulin mucin domain molecule-4 expression in dendritic cells[J]. Clin Exp Allergy, 2017, 47(5): 656-664. doi:10.1111/cea.12894. [9] 程雷, 钱俊俊, 田慧琴. 变应性鼻炎研究的若干进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021. CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021. [10] 焦沃尔. Notch信号在变应性鼻炎发病中的作用及机制研究进展[J]. 疑难病杂志, 2018, 17(8): 860-864. doi:10.3969/j.issn.1671-6450.2018.08.026. JIAO Wo'er. The research progress of function and mechanism of Notch signaling pathway in allergy rhinitis[J]. Chinese Journal of Difficult and Complicated Cases, 2018, 17(8): 860-864. doi:10.3969/j.issn.1671-6450.2018.08.026. [11] Steelant B, Seys SF, van Gerven L, et al. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis[J]. J Allergy Clin Immunol, 2018, 141(3): 951-963.e8. doi:10.1016/j.jaci.2017.08.039. [12] Morikawa T, Fukuoka A, Matsushita K, et al. Activation of group 2 innate lymphoid cells exacerbates and confers corticosteroid resistance to mouse nasal type 2 inflammation[J]. Int Immunol, 2017, 29(5): 221-233. doi:10.1093/intimm/dxx030. [13] Huang F, Yin JN, Wang HB, et al. Association of imbalance of effector T cells and regulatory cells with the severity of asthma and allergic rhinitis in children[J]. Allergy Asthma Proc, 2017,38(6): 70-77. doi:10.2500/aap.2017.38.4076. [14] Zhang LX, Liu T. Treg influences the pathogenesis of allergic rhinitis through TICAM-1 pathway[J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2018, 32(22): 1763-1766. doi:10.13201/j.issn.1001-1781.2018.22.020. [15] Oboki K, Ohno T, Saito H, et al. Th17 and allergy[J]. Allergol Int, 2008, 57(2): 121-134. doi:10.2332/allergolint.r-07-160. [16] Gu ZW, Wang YX, Cao ZW. Neutralization of interleukin-9 ameliorates symptoms of allergic rhinitis by reducing Th2, Th9, and Th17 responses and increasing the Treg response in a murine model[J]. Oncotarget, 2017, 8(9): 14314-14324. doi:10.18632/oncotarget.15177. [17] Liu Y, Zeng M, Liu Z. Th17 response and its regulation in inflammatory upper airway diseases[J]. Clin Exp Allergy, 2015, 45(3): 602-612. doi:10.1111/cea.12378. [18] Kim JH, Jang YJ. Role of natural killer cells in airway inflammation[J]. Allergy Asthma Immunol Res, 2018, 10(5): 448. doi:10.4168/aair.2018.10.5.448. [19] Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510. doi:10.1038/ni1582. [20] Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells[J]. Science, 2011, 331(6013):44-49. doi: 10.1126/science.1198687. [21] Scordamaglia F, Balsamo M, Scordamaglia A, et al. Perturbations of natural killer cell regulatory functions in respiratory allergic diseases[J]. J Allergy Clin Immunol, 2008, 121(2): 479-485. doi:10.1016/j.jaci.2007.09.047. [22] Pawlak EA, Noah TL, Zhou HB, et al. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randomized controlled trial of exposure in allergic rhinitics[J]. Part Fibre Toxicol, 2015, 13: 24. doi:10.1186/s12989-016-0135-7. [23] Chevalier MF, Bohner P, Pieraerts C, et al. Immunoregulation of dendritic cell subsets by inhibitory receptors in urothelial cancer[J]. Eur Urol, 2017, 71(6): 854-857. doi:10.1016/j.eururo.2016.10.009. [24] Hastings WD, Anderson DE, Kassam N, et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines[J]. Eur J Immunol, 2009, 39(9): 2492-2501. doi:10.1002/eji.200939274. [25] Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol, 2005, 6(12): 1245-1252. doi:10.1038/ni1271. [26] Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J]. Nat Immunol, 2012, 13(9): 832-842. doi:10.1038/ni.2376. [27] 张峰波, 员静, 朱玥洁, 等. 泡球蚴感染小鼠中Tim-3对Th1/Th2细胞因子平衡的影响作用研究[J]. 中国免疫学杂志, 2019, 35(3): 274-277, 281. doi:10.3969/j.issn.1000-484X.2019.03.004. ZHANG Fengbo, YUAN Jing, ZHU Yuejie, et al. Study of effects of Tim-3 on Th1/Th2 cytokine balance in mice infected with alveolar hydatid[J]. Chinese Journal of Immunology, 2019, 35(3): 274-277,281. doi:10.3969/j.issn.1000-484X.2019.03.004. [28] 韩佳利, 任重, 姜学钧. Tim-3在变应性鼻炎小鼠鼻黏膜中的表达及其作用的实验研究[J]. 中国医科大学学报, 2008, 37(4): 439-441. doi:10.3969/j.issn.0258-4646.2008.04.003. HAN Jiali, REN Zhong, JIANG Xuejun. Expression and significance of tim-3 in mouse NasalM ucosa with A llergic rhinitis[J]. Journal of China Medical University, 2008, 37(4): 439-441. doi:10.3969/j.issn.0258-4646.2008.04.003. [29] Fei Tang, Fukun Wang, Liyun An, et al. Upregulation of Tim-3 on CD4(+)T cells is associated with Th1/Th2 imbalance in patients with allergic asthma[J]. Int J Clin Exp Med, 2015,8(3):3809-3816. [30] Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation[J]. J Allergy Clin Immunol, 2014, 134(3): 509-520. doi:10.1016/j.jaci.2014.05.049. [31] Phong BL, Avery L, Sumpter TL, et al. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation[J]. J Exp Med, 2015, 212(13): 2289-2304. doi:10.1084/jem.20150388. [32] Gautron AS, Dominguez-Villar M, de Marcken M, et al. Enhanced suppressor function of TIM-3+FoxP3+regulatory T cells[J]. Eur J Immunol, 2014, 44(9): 2703-2711. doi:10.1002/eji.201344392. [33] Wang JY, Li C, Fu JJ, et al. Tim-3 regulates inflammatory cytokine expression and Th17 cell response induced by monocytes from patients with chronic hepatitis B[J]. Scand J Immunol, 2019, 89(5): e12755. doi:10.1111/sji.12755. [34] Xu LY, Huang YY, Tan LL, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J]. Int Immunopharmacol, 2015, 29(2): 635-641. doi:10.1016/j.intimp.2015.09.017. [35] Hou HY, Liu WY, Wu SJ, et al. Tim-3 negatively mediates natural killer cell function in LPS-induced endotoxic shock[J]. PLoS One, 2014, 9(10): e110585. doi:10.1371/journal.pone.0110585. [36] Gleason MK, Lenvik TR, McCullar V, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9[J]. Blood, 2012,119(13): 3064-3072. doi:10.1182/blood-2011-06-360321. [37] Ndhlovu LC, Lopez-Vergès S, Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J]. Blood, 2012, 119(16): 3734-3743. doi:10.1182/blood-2011-11-392951. [38] Kim N, Kim HS. Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells[J]. Front Immunol, 2018,9: 2041. doi:10.3389/fimmu.2018.02041. [39] Gleason MK, Lenvik TR, McCullar V, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9[J]. Blood, 2012,119(13): 3064-3072. doi:10.6040/j.issn.1673-3770.0.2019.618. |
[1] | WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124. |
[2] | LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70. |
[3] | LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91. |
[4] | NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115. |
[5] | LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122. |
[6] | LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. |
[7] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
[8] | GONG Xiaoyang, CHENG Lei. Analysis of proportion of outpatients with allergic rhinitis during the coronavirus infectious disease 2019 pandemic [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 245-255. |
[9] | ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259. |
[10] | LU Weili, JIANG Tao, LI Xianhua. Analysis of sIgE in polysensitized children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 260-265. |
[11] | HUANG Kaiyue, LI Xueqing, HAN Gouxin, ZHANG Qinxiu. Meta-analysis of acupoint catgut embedding in the treatment of allergic rhinitis based on the theory of “lung and spleen” [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 266-274. |
[12] | ZHU Zhengru, ZHANG Xiaobing. Meta-analysis of the curative effect of traditional Chinese medicine decoction combined with conventional western medicine on allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 281-289. |
[13] | HAN Yingying,LI Yanzhong. Obstructive sleep apnea hypopnea syndrome and subclinical arteriosclerosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 126-132. |
[14] | PANG Chong, BIAN Sainan, ZHANG Bing, YIN Xu, LU Yingxia, YE Pengfei, WANG Zhan, ZHAO Jing, GAO Yan, GUAN Kai. Short-term effect of Dermatophagoides farinae specific sublingual immunotherapy for children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 70-74. |
[15] | WANG Fei, LIU Yuying, XIAO Qiyi, DING Jian, GAO Shang, MAO Wei. A study on the associations between psychological factors and allergic rhinitis among residents [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 28-31. |
|