山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (6): 97-107.doi: 10.6040/j.issn.1673-3770.0.2024.149
• 论著 • 上一篇
盘琳琳1,万佳明2,李越3,何龙1
PAN Linlin1, WAN Jiaming2, LI Yue3, HE Long1
摘要: 目的 探究长链非编码RNA(long non-coding RNA, LncRNA)对头颈部鳞状细胞癌(head and neck squamous cell carcinoma, HNSCC)患者预后的影响,探索HNSCC的自噬预后相关LncRNA及其功能。 方法 从人类自噬数据库(human autophagy database, HADb)、癌症基因组图谱(cancer genome atlas, TCGA)下载自噬相关基因及HNSCC患者数据。经Pearson相关分析、Cox回归分析等筛选HNSCC的自噬预后相关LncRNA,进行功能富集分析并构建风险模型。根据中位风险评分将患者分为高危组和低危组,比较两组生存时间。利用受试者工作特征(receiver operating characteristic, ROC)曲线评估风险模型对HNSCC预后的预测能力,探索其临床价值,最后进行验证。 结果 共筛选出910个HNSCC的自噬相关LncRNA,再次筛选发现有7个自噬预后相关LncRNA为HNSCC的独立预后因子,分别为AL357033.4、AL160006.1、AC069360.1、AL132712.1、AC245041.2、LINC00707和AC082651.3,建立风险模型。高危组生存时间低于低危组,风险模型的HR为1.470(P<0.001)。ROC曲线中风险模型的AUC为0.736,优于其他临床特征。风险评分与AJCC分期(P<0.001)、pT分期(P=0.043)、pN分期(P=0.002)相关性有统计学意义。GSEA结果提示高风险组和低风险组生存时间的差异可能是由风险模型诱导的不同免疫状态引起的。 结论 此风险模型可以有效预测HNSCC预后,从而在HNSCC的发生发展中发挥关键作用。
中图分类号:
| [1] Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92. doi:10.1038/s41572-020-00224-3 [2] Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49. doi:10.3322/caac.21820 [3] Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 560-575. doi:10.1038/s41580-023-00585-z [4] Li XH, He SK, Ma BY. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19(1): 12. doi:10.1186/s12943-020-1138-4 [5] Xue YT, Jiang XJ, Wang JR, et al. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma[J]. Biomark Res, 2023, 11(1): 2. doi:10.1186/s40364-022-00433-w [6] Lu T, Li YS, Pan M, et al. TBC1D14 inhibits autophagy to suppress lymph node metastasis in head and neck squamous cell carcinoma by downregulating macrophage erythroblast attacher[J]. Int J Biol Sci, 2022, 18(5): 1795-1812. doi:10.7150/ijbs.68992 [7] Lin CW, Chen YF, Zhang F, et al. Encoding gene RAB3B exists in linear chromosomal and circular extrachromosomal DNA and contributes to cisplatin resistance of hypopharyngeal squamous cell carcinoma via inducing autophagy[J]. Cell Death Dis, 2022, 13(2): 171. doi:10.1038/s41419-022-04627-w [8] 涂巧铃, 李玉凤, 彭军. 鼻咽癌中抗PD-L1/PD-1治疗及非编码RNA调控研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 135-141. doi:10.6040/j.issn.1673-3770.0.2022.214 TU Qiaoling, LI Yufeng, PENG Jun. Advances in anti-PD-L1/PD-1 therapy and non-coding RNA regulation in nasopharyngeal carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 135-141. doi:10.6040/j.issn.1673-3770.0.2022.214 [9] Wang Y, Fu YQ, Lu YY, et al. Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(5): 188932. doi:10.1016/j.bbcan.2023.188932 [10] Xiang YD, Huang GQ, Wang J, et al. lncRNA HOXC-AS2 promotes the progression of hypopharyngeal cancer by binding to the P62 protein mediating the autophagy process[J]. Aging, 2023, 15(21): 12476-12496. doi:10.18632/aging.205192 [11] Yang YX, Chen D, Liu H, et al. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma[J]. Cell Death Dis, 2019, 10(2): 41. doi:10.1038/s41419-018-1280-8 [12] Picon H, Guddati AK. Mechanisms of resistance in head and neck cancer[J]. Am J Cancer Res, 2020, 10(9): 2742-2751. [13] Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. doi:10.15252/embj.2021108863 [14] Rakesh R, PriyaDharshini LC, Sakthivel KM, et al. Role and regulation of autophagy in cancer[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2022, 1868(7): 166400. doi:10.1016/j.bbadis.2022.166400 [15] Russell RC, Guan KL. The multifaceted role of autophagy in cancer[J]. EMBO J, 2022, 41(13): e110031. doi:10.15252/embj.2021110031 [16] 索安奇, 杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117. doi:10.6040/j.issn.1673-3770.0.2022.147 SUO Anqi, YANG Xinxin. Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 111-117. doi:10.6040/j.issn.1673-3770.0.2022.147 [17] Liang JF, Cai HS, Hou C, et al. METTL14 inhibits malignant progression of oral squamous cell carcinoma by targeting the autophagy-related gene RB1CC1 in an m6A-IGF2BP2-dependent manner[J]. Clin Sci, 2023, 137(17): 1373-1389. doi:10.1042/CS20230219 [18] Lu HX, Zhou JN, Li XJ, et al. miR-526b-3p enhances sensitivity of head and neck squamous cell carcinoma cells to radiotherapy via suppressing exosomal LAMP3-mediated autophagy[J]. Autoimmunity, 2023, 56(1): 2259125. doi:10.1080/08916934.2023.2259125 [19] Wei MW, Lu LB, Ma JS, et al. LINC00707 impairs the Natural Killer cell antitumour activity in hepatocellular carcinoma through decreasing YTHDF2 stability[J]. J Cell Mol Med, 2024, 28(5): e18106. doi:10.1111/jcmm.18106 [20] Gélabert C, Papoutsoglou P, Golán I, et al. The long non-coding RNA LINC00707 interacts with Smad proteins to regulate TGFβ signaling and cancer cell invasion[J]. Cell Commun Signal, 2023, 21(1): 271. doi:10.1186/s12964-023-01273-3 [21] Li HL, Liu QH, Hu YQ, et al. Linc00707 regulates autophagy and promotes the progression of triple negative breast cancer by activation of PI3K/AKT/mTOR pathway[J]. Cell Death Discov, 2024, 10(1): 138. doi:10.1038/s41420-024-01906-7 [22] Ren YT, Da JL, Ren JY, et al. An autophagy-related long non-coding RNA signature in tongue squamous cell carcinoma[J]. BMC Oral Health, 2023, 23(1): 120. doi:10.1186/s12903-023-02806-5 [23] Zhao FC, Li ZR, Dong ZF, et al. Exploring the potential of exosome-related LncRNA pairs as predictors for immune microenvironment, survival outcome, and microbiotain landscape in esophageal squamous cell carcinoma[J]. Front Immunol, 2022, 13: 918154. doi:10.3389/fimmu.2022.918154 [24] Fan X, Huang YH, Zhong Y, et al. A new marker constructed from immune-related lncRNA pairs can be used to predict clinical treatment effects and prognosis: in-depth exploration of underlying mechanisms in HNSCC[J]. World J Surg Oncol, 2023, 21(1): 250. doi:10.1186/s12957-023-03066-x [25] Li CX, Zheng LW, Xu GR, et al. Exploration of epithelial-mesenchymal transition-related lncRNA signature and drug sensitivity in breast cancer[J]. Front Endocrinol, 2023, 14: 1154741. doi:10.3389/fendo.2023.1154741 [26] Tian CM, Li XY, Ge CL. High expression of LAMA3/AC245041.2 gene pair associated with KRAS mutation and poor survival in pancreatic adenocarcinoma: a comprehensive TCGA analysis[J]. Mol Med, 2021, 27(1): 62. doi:10.1186/s10020-021-00322-2 [27] Wei JM, Zeng Y, Gao XB, et al. A novel ferroptosis-related lncRNA signature for prognosis prediction in gastric cancer[J]. BMC Cancer, 2021, 21(1): 1221. doi:10.1186/s12885-021-08975-2 [28] Wang S, Chai KQ, Chen JB. A novel prognostic nomogram based on 5 long non-coding RNAs in clear cell renal cell carcinoma[J]. Oncol Lett, 2019, 18(6): 6605-6613. doi:10.3892/ol.2019.11009 [29] Bueno-Urquiza LJ, Martínez-Barajas MG, Villegas-Mercado CE, et al. The two faces of immune-related lncRNAs in head and neck squamous cell carcinoma[J]. Cells, 2023, 12(5): 727. doi:10.3390/cells12050727 [30] Lv Y, Wang YH, Zhang ZK. Potentials of lncRNA-miRNA-mRNA networks as biomarkers for laryngeal squamous cell carcinoma[J]. Hum Cell, 2023, 36(1): 76-97. doi:10.1007/s13577-022-00799-x |
| [1] | 吴敏,李正阳,孟杰,叶惠平. 程序性细胞死亡的分子机制和其在鼻咽癌中的作用[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 152-157. |
| [2] | 张茂华,魏日富,朱忠寿,刘平,高尚,李慧凤. LncRNA PCAT-1对鼻咽癌细胞生物学行为及化疗敏感性的影响[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 68-76. |
| [3] | 朱晗,刘雪霞,张华. 自噬在变应性鼻炎发病的作用机制研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 79-86. |
| [4] | 王明明,罗洋,贺少娟,张现兴,李学忠. 慢性鼻窦炎鼻息肉基底干细胞转录组生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 6-15. |
| [5] | 张永红,张辉,王彩华,杨欣欣,吴允刚,赵玉凤,庞太忠,李晓瑜. 基于TCGA数据库构建喉鳞状细胞癌免疫相关基因预后模型及筛选靶向分子药物[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 54-62. |
| [6] | 周一静,邹建银,易红良,吴红敏. TGFBI在头颈部鳞状细胞癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 85-95. |
| [7] | 郝红,陈钢,王林娥. 腺样囊性癌关键基因表达的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 99-106. |
| [8] | 侯凌霄,展长翠,许安廷,范新泰,王娜. 鼻黏膜组织CD4+ T细胞参与季节性变应性鼻炎发病机制的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 96-104. |
| [9] | 杨英玲,苟浩铖,冯俊. 细胞焦亡的分子机制及其在头颈部鳞状细胞癌中的研究现状[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 160-165. |
| [10] | 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117. |
| [11] | 艾自琴,李军政. 免疫疫苗在头颈部鳞状细胞癌中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 143-150. |
| [12] | 王灵娃,王茹,房居高. 与喉乳头状瘤恶变进程及预后相关分子标志物研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 47-55. |
| [13] | 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. |
| [14] | 姚周周,张革化,常利红. 汉防己甲素调控肿瘤细胞自噬的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 139-143. |
| [15] | 齐雯雯,陈鲁秋,贾涛,陈雪梅,张杰,张皓,金鹏,张虎. 复发性喉乳头状瘤中潜在生物学标志物的筛选及生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 75-84. |
|
||