山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (6): 71-77.doi: 10.6040/j.issn.1673-3770.0.2024.152
• 论著 • 上一篇
秦娜娜1,李玉芬2,孙雨浩1,魏健3,李钦2
QIN Nana1, LI Yufen2, SUN Yuhao1, WEI Jian3, LI Qin2
摘要: 目的 探讨白细胞介素13受体α2(interleukin-13 receptor α2, sIL-13Rα2)对变应性鼻炎(allergic rhinitis, AR)大鼠鼻黏膜组织重塑的影响及相关的可能性机制。 方法 采用随机数字表法将大鼠分为AR模型组、sIL-13Rα2处理组和对照组,每组各10只。将AR模型组及sIL-13Rα2处理组大鼠以卵清蛋白和氢氧化铝构建Wistar大鼠AR模型后,分别于第4~12周每只每侧鼻腔滴入磷酸盐缓冲液50 μL、sIL-13Rα2 50 μL(100 μg),每周2次。于最后一次滴入结束后24 h取大鼠鼻黏膜组织,HE(hematoxylin-eosin staining)染色观察其病理学变化,RT-PCR(reverse transcription-polymerase chain reaction)检测各组大鼠鼻黏膜组织TGF-β1、Smad2、Smad3和Smad7mRNA水平,Western blotting检测TGF-β1、Smad2、Smad3和Smad7蛋白的表达情况。 结果 AR模型组大鼠鼻黏膜肿胀,基底膜增厚,上皮细胞排列紊乱,间质水肿,伴随大量的炎性细胞浸润,而sIL-13Rα2处理组大鼠鼻黏膜上述炎症表现明显减轻。sIL-13Rα2处理组大鼠鼻黏膜组织中TGF-β1、Smad2、Smad3mRNA表达强度明显低于AR模型组(P<0.001,P<0.001,P<0.001);sIL-13Rα2处理组大鼠鼻黏膜组织中Smad7mRNA表达强度明显高于AR模型组(P<0.001)。sIL-13Rα2处理组大鼠鼻黏膜组织中TGF-β1、Smad2、Smad3蛋白表达明显低于AR模型组(P<0.05,P<0.001,P<0.001);sIL-13Rα2处理组大鼠鼻黏膜组织中Smad7蛋白表达明显高于AR模型组(P<0.01)。 结论 鼻腔滴入IL-13Rα2可通过下调鼻黏膜组织中TGF-β1、Smad2、Smad3的过表达,同时升高Smad7表达,进而明显减轻了AR大鼠鼻黏膜组织重塑。
中图分类号:
| [1] Ojiaku CA, Yoo EJ, Panettieri RA Jr. Transforming growth factor β1 function in airway remodeling and hyperresponsiveness. the missing link?[J]. Am J Respir Cell Mol Biol, 2017, 56(4): 432-442. doi:10.1165/rcmb.2016-0307TR [2] Zhao R, Li N, Xu JC, et al. Quantitative single-molecule study of TGF-β/Smad signaling[J]. Acta Biochim Biophys Sin, 2018, 50(1): 51-59. doi:10.1093/abbs/gmx121 [3] Zhang YE. Mechanistic insight into contextual TGF-β signaling[J]. Curr Opin Cell Biol, 2018, 51: 1-7. doi:10.1016/j.ceb.2017.10.001 [4] Bai J, Xi Q. Crosstalk between TGF-β signaling and epigenome[J]. Acta Biochim Biophys Sin(Shanghai), 2018, 50(1): 60-67. doi: 10.1093/abbs/gmx122 [5] 万琪, 吴朔, 宋爱玲, 等. 可溶性IL-13受体α2对支气管哮喘小鼠气道炎症的影响 [J]. 中华哮喘杂志(电子版), 2010, 4(5): 324-328 WAN Qi,WU Shuo,SONG Ailing,et al.Effect of soluble interleukin-13 receptorα2 on inflammatory airway of asthmatic mouse[J].Chinese Journal of Asthma(Electronic Edition), 2010, 4(5): 324-328 [6] 金旗, 熊丽霞. IL-13 Rα2作为功能受体介导信号转导的研究进展[J]. 中国病理生理杂志, 2014, 30(8): 1513-1518. doi:10.3969/j.issn.1000-4718.2014.08.031 JIN Qi, XIONG Lixia. IL-13Rα2 as a functional receptor mediates signal transduction[J]. Chinese Journal of Pathophysiology, 2014, 30(8): 1513-1518. doi:10.3969/j.issn.1000-4718.2014.08.031 [7] 佘文煜, 董震. 实验性变应性鼻炎鼻黏膜组织重塑的特点[J]. 中华耳鼻咽喉头颈外科杂志, 2006, 41(1): 48-53. doi:10.3760/j.issn: 1673-0860.2006.01.014 SHE Wenyu, DONG Zhen. Nasal mucosa remodeling in guinea pig model of allergic rhinitis[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2006, 41(1): 48-53. doi:10.3760/j.issn: 1673-0860.2006.01.014 [8] 李钦, 陈彦林, 马焱燚, 等. JNK信号途径蛋白P-JNK和P-c-Jun在变应性鼻炎大鼠鼻黏膜组织重塑中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2015, 29(23): 2057-2059. doi:10.13201/j.issn.1001-1781.2015.23.011 LI Qin, CHEN Yanlin, MA Yanyi, et al. Role of P-JNK and P-c-Jun of JNK transduction pathway on the nasal mucosa remodeling in allergic rhinitis rats[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2015, 29(23): 2057-2059. doi:10.13201/j.issn.1001-1781.2015.23.011 [9] 李钦, 李玉芬, 陈彦林, 等. 白细胞介素5和13受体对变应性鼻炎大鼠血管细胞黏附分子1及γ干扰素的影响[J]. 中华耳鼻咽喉头颈外科杂志, 2012, 47(8): 638-641. doi:10.3760/cma.j.issn.1673-0860.2012.08.006 LI Qin, LI Yufen, CHEN Yanlin, et al. Effect of combined use of sIL-5Rα and sIL-13Rα2 on VCAM-1 and IFN-γ in allergic rhinitis rats[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2012, 47(8): 638-641. doi:10.3760/cma.j.issn.1673-0860.2012.08.006 [10] 李钦, 秦桂珍, 顾晓, 等. 白细胞介素13受体α2对变应性鼻炎大鼠鼻黏膜中杯状细胞凋亡的作用[J]. 中华耳鼻咽喉头颈外科杂志, 2018, 53(10): 745-750. doi:10.3760/cma.j.issn.1673-0860.2018.10.006 LI Qin, QIN Guizhen, GU Xiao, et al. Effects of sIL-13Ro α2 on the nasal mucosa goblet cell apoptosis of allergic rhinitis of rats[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2018, 53(10): 745-750. doi:10.3760/cma.j.issn.1673-0860.2018.10.006 [11] 刘建国, 刘月辉. 上下呼吸道炎性黏膜重塑病理形态研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2010, 24(15): 717-720. doi: 10.3969/j.issn.1001-1781.2010.15.017 LIU Jianguo, LIU Yuehui. Research progress on pathological morphology of inflammatory mucosal remodeling in upper and lower respiratory tract[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2010, 24(15): 717-720. doi:10.3969/j.issn.1001-1781.2010.15.017 [12] 张敏, 王建亭, 武大伟, 等. 慢性鼻-鼻窦炎黏膜重塑研究进展[J]. 国际耳鼻咽喉头颈外科杂志, 2016, 40(2): 75-79. doi:10.3760/cma.j.issn.1673-4106.2016.02.003 ZHANG Min, WANG Jianting, WU Dawei, et al. Review of mucosa remodeling in chronic rhinosinusitis[J]. International Journal of Otolaryngology-Head and Neck Surgery, 2016, 40(2): 75-79. doi:10.3760/cma.j.issn.1673-4106.2016.02.003 [13] El Nashar EM, Alghamdi MA, Alasmari WA, et al. Autophagy promotes the survival of adipose mesenchymal stem/stromal cells and enhances their therapeutic effects in cisplatin-induced liver injury via modulating TGF-β1/smad and PI3K/AKT signaling pathways[J]. Cells, 2021, 10(9): 2475. doi:10.3390/cells10092475 [14] Postma DS, Timens W. Remodeling in asthma and chronic obstructive pulmonary disease[J]. Proc Am Thorac Soc, 2006, 3(5): 434-439. doi:10.1513/pats.200601-006AW [15] Lapperre TS, Willems LN, Timens W, et al. Small airways dysfunction and neutrophilic inflammation in bronchial biopsies and BAL in COPD[J]. Chest, 2007, 131(1): 53-59. doi:10.1378/chest.06-0796 [16] Wang X, Chu J, Wen CJ, et al. Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-β/Smad signaling in hypertrophic scar fibroblasts[J]. Exp Cell Res, 2015, 332(2): 202-211. doi:10.1016/j.yexcr.2015.01.015 [17] 黄茂, 吉宁飞, 吴超杰. 重症哮喘气道炎症机制的新进展[J]. 中华结核和呼吸杂志, 2017, 40(11): 810-812. doi:10.3760/cma.j.issn.1001-0939.2017.11.005 HUANG Mao, JI Ningfei, WU Chaojie. New progress in the mechanism of airway inflammation in severe asthma[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2017, 40(11): 810-812. doi:10.3760/cma.j.issn.1001-0939.2017.11.005 [18] 田彦, 崔红生, 李长安, 等. 三步序贯法对哮喘模型大鼠激素撤减过程中TGF-β1/Smad信号通路的影响[J]. 中国中西医结合杂志, 2017, 37(10): 1226-1232. doi:10.7661/j.cjim.20170714.185 TIAN Yan, CUI Hongsheng, LI Changan, et al. Effect of three stage sequential therapy on TGF-β1/smad signaling pathway in asthma model rats in the process of steroid withdrawal[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2017, 37(10): 1226-1232. doi:10.7661/j.cjim.20170714.185 [19] Ye ZM, Hu YB. TGF-β1: gentlemanly orchestrator in idiopathic pulmonary fibrosis(Review)[J]. Int J Mol Med, 2021, 48: 132. doi:10.3892/ijmm.2021.4965 [20] Lessard SJ, MacDonald TL, Pathak P, et al. JNK regulates muscle remodeling via myostatin/SMAD inhibition[J]. Nat Commun, 2018, 9(1): 3030. doi:10.1038/s41467-018-05439-3 [21] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. doi:10.1016/j.cbi.2018.07.008 [22] Ma TT, Meng XM. TGF-β/smad and renal fibrosis[J]. Adv Exp Med Biol, 2019, 1165: 347-364. doi:10.1007/978-981-13-8871-2_16 [23] Dubois A, Deruytter N, Adams B, et al. Regulation of Th2 responses and allergic inflammation through bystander activation of CD8+ T lymphocytes in early life[J]. J Immunol, 2010, 185(2): 884-891. doi:10.4049/jimmunol.0903287 [24] 余群芳, 蔡震宇, 朱俊, 等. siRNA干扰IL-13Rα2表达对人肺成纤维细胞TGF-β表达的影响[J]. 中国病理生理杂志, 2015, 31(10): 1915. doi:10.3969/j.issn.1000-4718.2015.10.377 YU Qunfang, CAI Zhenyu, ZHU Jun, et al. Effect of siRNA interfering with IL-13Rα 2 expression on TGF-β expression in human lung fibroblasts[J]. Chinese Journal of Pathophysiology, 2015, 31(10): 1915. doi:10.3969/j.issn.1000-4718.2015.10.377 [25] 何晓璐, 石小玉. 白介素13受体α2的研究进展[J]. 实用临床医学, 2009, 10(1): 136-138. doi:10.3969/j.issn.1009-8194.2009.01.077 HE Xiaolu, SHI Xiaoyu. Research progress of interleukin-13 receptor α2[J]. Practical Clinical Medicine, 2009, 10(1): 136-138. doi:10.3969/j.issn.1009-8194.2009.01.077 [26] 王重阳, 姜京植, 李俊峰, 等. 隐丹参酮通过TWEAK/Fn14和TGF-β1/Smads信号通路 缓解OVA诱导哮喘小鼠气道炎症[J]. 中国药理学通报, 2019, 35(8): 1149-1154. doi:10.3969/j.issn.1001-1978.2019.08.022 WANG(ChongZhong)(Yang), JIANG Jingzhi, LI Junfeng, et al. Effects of cryptotanshinone on airway inflammation models in asthmatic mice through TWEAK/Fn14 and TGF-β1/Smads signaling pathways[J]. Chinese Pharmacological Bulletin, 2019, 35(8): 1149-1154. doi:10.3969/j.issn.1001-1978.2019.08.022 [27] 朱玉, 朱新华. TH2细胞因子在2型慢性鼻窦炎伴鼻息肉中的作用机制研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 156-161 ZHU Yu, ZHU Xinhua. Research progress on the role of TH2 cytokines in Type2 chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 156-161. doi:10.6040/j.issn.1673-3770.0.2022.258 [28] Meng Q, Li P, Li Y, et al. Broncho-vaxom alleviates persistent allergic rhinitis in patients by improving Thl/ Th2 cytokine balance of nasal mucosa [ J]. Rhinology, 2019, 57(6): 451-459. doi:10.4193/Rhin19.161 |
| [1] | 许雪萌,樊磊,喻望博,蒋芝月,潘晨,黄泳芹. 奥马珠单抗联合特异性免疫治疗变应性鼻炎疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2025, 39(5): 26-33. |
| [2] | 刘怡君,谷悦,官大宇,杨玉成,沈暘. 翼管神经切断术在难治性变应性鼻炎中远期临床疗效和安全性[J]. 山东大学耳鼻喉眼学报, 2025, 39(5): 42-48. |
| [3] | 张婷,王美兰,高映勤. 白细胞介素35在变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(5): 139-147. |
| [4] | 张竹萍,彭孜灿,肖振龙,李程,喻迪,王兴龙,陈伟,郭蓓. 新型鼻分泌物嗜酸粒细胞阳离子蛋白-髓过氧化物酶试纸在变应性鼻炎中的应用价值[J]. 山东大学耳鼻喉眼学报, 2025, 39(3): 129-134. |
| [5] | 刘畅,杨景朴,高雨,王文佳. 长春地区儿童变应性鼻炎变应原检测结果分析[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 51-58. |
| [6] | 周荷青,申琪. 中医药治疗变应性鼻炎疗效的生物标志物研究进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(2): 168-176. |
| [7] | 王文晴,张丹,朱梦迪,王路阳,杨培培,孙思思,张秋敏,周慧. 慢性鼻窦炎伴鼻息肉复发手术时临床及组织病理学特征变化[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 46-53. |
| [8] | 王曼娴,郑泉,杨亮. 细菌裂解物治疗变应性鼻炎的研究进展[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 141-145. |
| [9] | 刘畅,方宏艳,刘敩,富东娜,王贺,王晶,杨景朴. 长春地区秋季变应性鼻炎蒿属花粉致敏特征分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 13-19. |
| [10] | 朱朗,刘志奇. 移动医疗提供的真实世界数据在变应性鼻炎治疗方案中的参考[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 135-139. |
| [11] | 张静祎,董湘依,牟亚魁,宋西成. 细胞焦亡在耳鼻咽喉科疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 140-148. |
| [12] | 张丽净,冯晓星,刘南仙,赵辉明,陈月华. 石墨烯养护鼻罩结合尘螨的皮下特异性免疫治疗在尘螨变应性鼻炎患者中的应用分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 26-32. |
| [13] | 张诗涵,刘红兵. 基质金属蛋白酶对慢性鼻窦炎组织重塑的影响[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 116-123. |
| [14] | 张永财,张江,卢慧,邢可欣,吴靖芳,薛刚,李燕萍,刘延彬. CXCL10及IFN-γ在上颌窦后鼻孔息肉中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 7-12. |
| [15] | 苏日古格,李花,乌日柴夫,韩额尔德木图,孟永梅. 基于网络药理学及动物实验探讨蒙药胡日查-6治疗变应性鼻炎的作用机制研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 41-51. |
|
||