山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 26-31.doi: 10.6040/j.issn.1673-3770.0.2021.090
王晓亭,陈正侬,易红良
WANG Xiaoting, CHEN Zhengnong, YI Hongliang
摘要: 目的 利用RNA-seq技术研究谷氨酰胺剥夺对喉癌细胞基因表达谱的影响。 方法 CCK8检测喉癌细胞增殖速度,RNA sequence检测转录组学的改变。 结果 谷氨酰胺剥夺限制喉癌细胞的增殖,转录组分析发现谷氨酰胺剥夺导致328个基因上调,210个基因下调;GO分析发现上述基因与细胞代谢、蛋白质和核苷酸的合成相关;KEGG信号通路分析发现上述基因与O-多聚糖、糖基磷脂酰肌醇的生物合成,果糖、甘露糖、氨基酸和核苷酸的代谢,P53信号通路相关;疾病富集发现差异表达的基因主要与头颈部肿瘤相关。 结论 谷氨酰胺剥夺限制核酸代谢、RNA和蛋白质的结合,影响P53信号通路。
中图分类号:
[1] 徐进敬, 胡京华, 吴元庆, 等. CO2激光显微手术在喉癌前病变和早期声门型喉癌中的应用[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 129-133. doi:10.6040/j.issn.1673-3770.0.2019.501. XU Jinjing, HU Jinghua, WU Yuanqing, et al. Applications of CO2 lasermicrosurgery on laryngeal precancerous lesions and early glottic laryngeal carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 129-133. doi:10.6040/j.issn.1673-3770.0.2019.501. [2] 谭凤武,邓亚萍,黎可华. 低温等离子射频消融与CO2激光手术治疗早期声门型喉癌疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 63-71. doi:10.6040/j.issn.1673-3770.0.2019.570. TAN Fengwu, DENG Yaping, LI Kehua. The therapeutic effects of low temperature plasma radiofrequency ablation and CO2 laser surgery on early glottic carcinoma: a Meta-analysis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 63-71. doi:10.6040/j.issn.1673-3770.0.2019.570. [3] 李晓明. 喉癌治疗中喉功能保留的历史、现状和未来[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 1-5. doi:10.6040/j.issn.1673-3770.1.2019.030. LI Xiaoming. History, current status and future of laryngeal function retention in laryngeal cancer treatment[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 1-5. doi:10.6040/j.issn.1673-3770.1.2019.030. [4] Magrini SM, Buglione M, Corvò R, et al. Cetuximab and radiotherapy versus cisplatin and radiotherapy for locally advanced head and neck cancer: a randomized phase II trial[J]. J Clin Oncol, 2016, 34(5): 427-435. doi:10.1200/JCO.2015.63.1671. [5] Leone RD, Zhao L, Englert JM, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468): 1013-1021.doi:10.1126/science.aav2588. [6] Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy[J]. Nat Rev Cancer, 2016, 16(11): 749. doi:10.1038/nrc.2016.114. [7] Li T, Copeland C, Le A. Glutamine metabolism in cancer[J]. Adv Exp Med Biol, 2021, 1311: 17-38. doi:10.1007/978-3-030-65768-0_2. [8] Bhutia YD, Babu E, Ramachandran S, et al. Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs[J]. Cancer Res, 2015, 75(9): 1782-1788. doi:10.1158/0008-5472.can-14-3745. [9] van Geldermalsen M, Wang Q, Nagarajah R, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer[J]. Oncogene, 2016, 35(24): 3201-3208. doi:10.1038/onc.2015.381. [10] Sandulache VC, Ow TJ, Pickering CR, et al. Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells[J]. Cancer, 2011, 117(13): 2926-2938. doi:10.1002/cncr.25868. [11] Smith B, Schafer XL, Ambeskovic A, et al. Addiction to coupling of the Warburg effect with glutamine catabolism in cancer cells[J]. Cell Rep, 2016, 17(3): 821-836. doi:10.1016/j.celrep.2016.09.045. [12] Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23(1): 27-47. doi:10.1016/j.cmet.2015.12.006. [13] Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine[J]. EMBO J, 2017, 36(10): 1302-1315. doi:10.15252/embj.201696151. [14] Yang LF, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism[J]. Annu Rev Biomed Eng, 2017, 19: 163-194. doi:10.1146/annurev-bioeng-071516-044546. [15] Li L, Meng Y, Li ZY, et al. Discovery and development of small molecule modulators targeting glutamine metabolism[J]. Eur J Med Chem, 2019, 163: 215-242. doi:10.1016/j.ejmech.2018.11.066. [16] Bott AJ, Shen JL, Tonelli C, et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism[J]. Cell Rep, 2019, 29(5): 1287-1298.e6.doi:10.1016/j.celrep.2019.09.056. [17] Cluntun AA, Lukey MJ, Cerione RA, et al. Glutamine metabolism in cancer: understanding the heterogeneity[J]. Trends Cancer, 2017, 3(3): 169-180. doi:10.1016/j.trecan.2017.01.005. [18] Dejure FR, Eilers M. MYC and tumor metabolism: chicken and egg[J]. EMBO J, 2017, 36(23): 3409-3420. doi:10.15252/embj.201796438. [19] Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction[J]. Proc Natl Acad Sci USA, 2008, 105(48): 18782-18787. doi:10.1073/pnas.0810199105. [20] De Vitto H, Pérez-Valencia J, Radosevich JA. Glutamine at focus: versatile roles in cancer[J]. Tumour Biol, 2016, 37(2): 1541-1558. doi:10.1007/s13277-015-4671-9. [21] Liu Y, He XC, Chen YL, et al. Long non-coding RNA LINC00504 regulates the Warburg effect in ovarian cancer through inhibition of miR-1244[J]. Mol Cell Biochem, 2020, 464(1/2): 39-50.doi:10.1007/s11010-019-03647-z. [23] Yin L, Yan J, Wang YY, et al. TIGD1, a gene of unknown function, involves cell-cycle progression and correlates with poor prognosis in human cancer[J]. J Cell Biochem, 2019, 120(6): 9758-9767.doi:10.1002/jcb.28256. [24] Liu QC, Guo L, Zhang S, et al. PRSS1 mutation: a possible pathomechanism of pancreatic carcinogenesis and pancreatic cancer[J]. Mol Med, 2019, 25(1): 44. doi:10.1186/s10020-019-0111-4. [25] Lee SK, Park EJ, Lee HS, et al. Genome-wide screen of human bromodomain-containing proteins identifies Cecr2 as a novel DNA damage response protein[J]. Mol Cells, 2012, 34(1): 85-91.doi:10.1007/s10059-012-0112-4. [26] Ge CQ, Li QF, Wang LP, et al. The role of axon guidance factor semaphorin 6B in the invasion and metastasis of gastric cancer[J]. J Int Med Res, 2013, 41(2): 284-292.doi:10.1177/0300060513476436. [27] Cacace A, Sboarina M, Vazeille T, et al. Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism[J]. Oncogene, 2017, 36(15): 2074-2084.doi:10.1038/onc.2016.364. [28] Sun NC, Liang Y, Chen YB, et al. Glutamine affects T24 bladder cancer cell proliferation by activating STAT3 through ROS and glutaminolysis[J]. Int J Mol Med, 2019, 44(6): 2189-2200.doi:10.3892/ijmm.2019.4385. [29] Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell[J]. Cell Death Differ, 2019, 26(2): 199-212. doi:10.1038/s41418-018-0246-9. [30] Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response[J]. J Cell Sci, 2020, 133(5): jcs237453. doi:10.1242/jcs.237453. [31] Akins NS, Nielson TC, Le HV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer[J]. Curr Top Med Chem, 2018, 18(6): 494-504. doi:10.2174/1568026618666180523111351. |
[1] | 李利杰,田秀芬. CO2激光联合低温等离子治疗早期声门型喉癌40例[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 79-85. |
[2] | 王媚 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128. |
[3] | 冯成敏,敬一丹刘海,王冰. 咽喉部鳞状细胞癌细胞系[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 113-124. |
[4] | 李艳杰, 贾建,杨萍,万保罗. 肿瘤异常蛋白在喉癌临床诊断中的价值研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 70-74. |
[5] | 陈国平,傅敏仪,叶飞,徐建慧. 早期声门型喉癌钬激光与CO2激光手术对比研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 8-11. |
[6] | 吴允刚,张辉,孙聚兴,刘涛,王彩华,杨欣欣,马林祥,李笑颖,庞太忠,李晓瑜. 环甲膜联合喉室入路切除T1B声门型喉癌临床疗效分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 30-34. |
[7] | 石玉琦,佘翠平,张庆丰,刘得龙,焦梦思. 早期声门型喉癌低温等离子射频术后喉部感染诊治经验与教训[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 129-134. |
[8] | 周恩,肖禹,肖旭平. 等离子射频消融技术在早期声门型喉癌治疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 9-15. |
[9] | 肖旭平,周恩,肖禹. 等离子点状激发射频消融技术治疗早期声门型喉癌(Tis-T1b)31例[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 60-66. |
[10] | 崔小缓,李丽娜,张延平,蒋兴旺,毕欣欣,冉桃桃,吴莹莹,刘雅莉. 改良负压封闭引流装置在难治性咽瘘治疗中的应用[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 49-53. |
[11] | 庞振文,黄愉峰,杨爱芳,曾先捷. 喉癌患者术前中性粒细胞/淋巴细胞比值与淋巴结转移的相关性研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 58-62. |
[12] | 谭凤武,邓亚萍,黎可华. 低温等离子射频消融与CO2激光手术治疗早期声门型喉癌疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 63-71. |
[13] | 徐进敬,胡京华,吴元庆,邓毅,喻唯唯. CO2激光显微手术在喉癌前病变和早期声门型喉癌中的应用[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 129-133. |
[14] | 罗露,周恩,欧阳思,陈义,肖旭平,王继华. 42例喉癌患者血清 microRNAlet-7a 水平的变化及意义[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 96-100. |
[15] | 申宇鹏,宋琦,李晓明. 喉癌前病变的病因、分子机制和处理策略[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 25-30. |
|