Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (5): 98-104.doi: 10.6040/j.issn.1673-3770.0.2020.365

Previous Articles     Next Articles

Research developments on microRNA in the pathogenesis of allergic rhinitis

WANG Yuting,WANG Jiaxi   

  1. Department of Otorhinolaryngology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
  • Published:2021-09-29

Abstract: The pathogenesis of allergic rhinitis, a common clinical disease, is relatively complex, and there are still defects in its diagnosis and treatment. The microRNA has been a research hotspot in recent years, and studies on allergic rhinitis provided a new understanding of the disease. This study summarizes the relationship between microRNA and allergic rhinitis in the perspectives of innate immunity, adaptive immunity, and epigenetic factors, in order to determine its pathogenesis.

Key words: MicroRNA, Allergic rhinitis, Pathogenesis, Innate immunity, Adaptive immunity, Epigenetic

CLC Number: 

  • R765.22
[1] Cheng L, Chen JJ, Fu QL, et al. Chinese society of allergy guidelines for diagnosis and treatment of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2018, 10(4): 300-353. doi:10.4168/aair.2018.10.4.300.
[2] Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic[J]. Nat Rev Immunol, 2016, 16(5): 279-294. doi:10.1038/nri.2016.40.
[3] Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2012, 185(2): 140-151. doi:10.1164/rccm.201103-0456oc.
[4] Lu TX, Hartner J, Lim EJ, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity[J]. J Immunol, 2011, 187(6): 3362-3373. doi:10.4049/jimmunol.1101235.
[5] Chen XF, Zhang LJ, Zhang J, et al. MiR-151a is involved in the pathogenesis of atopic dermatitis by regulating interleukin-12 receptor β2[J]. Exp Dermatol, 2018, 27(4): 427-432. doi:10.1111/exd.13276.
[6] Suojalehto H, Lindström I, Majuri ML, et al. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis[J]. Int Arch Allergy Immunol, 2014, 163(3): 168-178. doi:10.1159/000358486.
[7] Liu X, Ren Y, Sun X, et al. Bioinformatics-based approaches predict that MIR-17-5P functions in the pathogenesis of seasonal allergic rhinitis through regulating ABCA1 and CD69[J]. Am J Rhinol Allergy, 2019, 33(3): 269-276. doi:10.1177/1945892418823388.
[8] Dunlop J, Matsui E, Sharma HP. Allergic rhinitis: environmental determinants[J]. Immunol Allergy Clin North Am, 2016, 36(2): 367-377. doi:10.1016/j.iac.2015.12.012.
[9] Yu SY, Yehia G, Wang JF, et al. Global ablation of the mouse Rab11a gene impairs early embryogenesis and matrix metalloproteinase secretion[J]. J Biol Chem, 2014, 289(46): 32030-32043. doi:10.1074/jbc.M113.538223.
[10] Wang J, Cui Z, Liu L, et al. MiR-146a mimic attenuates murine allergic rhinitis by downregulating TLR4/TRAF6/NF-κB pathway[J]. Immunotherapy, 2019, 11(13): 1095-1105. doi:10.2217/imt-2019-0047.
[11] Xiao L, Jiang L, Hu Q, et al. MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in Murine Model of Allergic Rhinitis by Targeting Nlrp3[J]. Cellular Physiology and Biochemistry,2017,42:901-912. doi: 10.1159/000478645
[12] Tomazic PV, Birner-grueberger R, Leitner A, et al. Seasonal proteome changes of nasal mucus reflect perennial inflammatory response and reduced defence mechanisms and plasticity in allergic rhinitis[J]. J Proteomics,2016,133:153-160. doi: 10.1016/j.jprot.2015.12.021.
[13] Shah SA, Ishinaga H, Hou B, et al. Effects of interleukin-31 on MUC5AC gene expression in nasal allergic inflammation[J]. Pharmacology, 2013, 91(3/4): 158-164. doi:10.1159/000346609.
[14] Teng YS, Zhang RX, Liu CH, et al. miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1[J]. Biochem Biophys Res Commun, 2015, 457(1): 58-64. doi:10.1016/j.bbrc.2014.12.058.
[15] Corren J. Role of interleukin-13 in asthma[J]. Curr Allergy Asthma Rep, 2013, 13(5): 415-420. doi:10.1007/s11882-013-0373-9.
[16] Gao Y, Yu Z. MicroRNA-16 inhibits interleukin-13-induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor-κB pathway[J]. Mol Med Rep, 2018, 18(4): 4042-4050. doi:10.3892/mmr.2018.9394.
[17] Zhao CY, Wang W, Yao HC, et al. SOCS3 is upregulated and targeted by miR30a-5p in allergic rhinitis[J]. Int Arch Allergy Immunol, 2018, 175(4): 209-219. doi:10.1159/000486857.
[18] Luo XQ, Shao JB, Xie RD, et al. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis[J]. Oncotarget, 2017, 8(30): 48915-48921. doi:10.18632/oncotarget.16555.
[19] Moreira AP, Cavassani KA, Hullinger R, et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease[J]. J Allergy Clin Immunol, 2010, 126(4): 712-721.e7. doi:10.1016/j.jaci.2010.06.010.
[20] Wang L, Liu XY, Song XC, et al. MiR-202-5p promotes M2 polarization in allergic rhinitis by targeting MATN2[J]. Int Arch Allergy Immunol, 2019, 178(2): 119-127. doi:10.1159/000493803.
[21] Anderson EL, Kobayashi T, Iijima K, et al. IL-33 mediates reactive eosinophilopoiesis in response to airborne allergen exposure[J]. Allergy, 2016, 71(7): 977-988. doi:10.1111/all.12861.
[22] 江远航. miR-155对小鼠ILC2分泌Th2型细胞因子的影响[D]. 南昌: 南昌大学, 2019.
[23] Yamada Y, Kosaka K, Miyazawa T, et al. miR-142-3p enhances FcεRI-mediated degranulation in mast cells[J]. Biochem Biophys Res Commun, 2014, 443(3): 980-986. doi:10.1016/j.bbrc.2013.12.078.
[24] Xu H, Gu LN, Yang QY, et al. MiR-221 promotes IgE-mediated activation of mast cells degranulation by PI3K/Akt/PLCγ/Ca(2+)pathway[J]. J Bioenerg Biomembr, 2016, 48(3): 293-299. doi:10.1007/s10863-016-9659-7.
[25] Ping He, Jin Ni, Hui Zhao, et al. Diagnostic value of miR-221 and miR-142-3p expressions of allergic rhinitis and miR-221 level is positively correlated with disease severity[J]. Int J Clin Exp Med,2017,10(5):7834-7842.
[26] Banerjee A, Schambach F, DeJong CS, et al. Micro-RNA-155 inhibits IFN-γ signaling in CD4+ T cells[J]. Eur J Immunol, 2010, 40(1): 225-231. doi:10.1002/eji.200939381.
[27] Chen Z, Deng Y, Li F, et al. MicroRNA-466a-3p attenuates allergic nasal inflammation in mice by targeting GATA3[J]. Clin Exp Immunol, 2019, 197(3): 366-375. doi:10.1111/cei.13312.
[28] Deng YQ, Yang YQ, Wang SB, et al. Intranasal administration of lentiviral miR-135a regulates mast cell and allergen-induced inflammation by targeting GATA-3[J]. PLoS One, 2015, 10(9): e0139322. doi:10.1371/journal.pone.0139322.
[29] Saad K, Zahran AM, Elsayh KI, et al. Variation of regulatory T lymphocytes in the peripheral blood of children with allergic rhinitis[J]. Arch Immunol Ther Exp(Warsz), 2018, 66(4): 307-313. doi:10.1007/s00005-017-0498-y.
[30] Wang L, Yang X, Li W, et al. MiR-202-5p/MATN2 are associated with regulatory T-cells differentiation and function in allergic rhinitis[J]. Hum Cell, 2019, 32(4): 411-417. doi:10.1007/s13577-019-00266-0.
[31] Liu HJ, Zhang AF, Zhao N, et al. Role of miR-146a in enforcing effect of specific immunotherapy on allergic rhinitis[J]. Immunol Investig, 2016, 45(1): 1-10. doi:10.3109/08820139.2015.1085390.
[32] Chen RF, Huang HC, Ou CY, et al. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis[J]. Clin Exp Allergy, 2010, 40(10): 1482-1490. doi:10.1111/j.1365-2222.2010.03592.x.
[33] Puxeddu I, Berkman N, Ribatti D, et al. Osteopontin is expressed and functional in human eosinophils[J]. Allergy, 2010, 65(2): 168-174. doi:10.1111/j.1398-9995.2009.02148.x.
[34] Liu WL, Zeng QX, Luo RZ. Correlation between serum osteopontin and miR-181a levels in allergic rhinitis children[J]. Mediat Inflamm, 2016, 2016: 1-6. doi:10.1155/2016/9471215.
[35] Moorchung N, Srivastava AN, Gupta NK, et al. Cytokine gene polymorphisms and the pathology of chronic gastritis[J]. Singapore Med J, 2007, 48(5): 447-454.
[36] Mu ZL, Wang YL. The influence of overexpressions of microRNA-375 on the expression of thymic stromal lymphopoietin and IL-4, IL-13 in allergic rhinitis mice[J]. Asian Pac J Trop Med, 2018, 11(13): 43. doi:10.4103/1995-7645.243111.
[37] Wang T, Chen D, Wang PH, et al. miR-375 prevents nasal mucosa cells from apoptosis and ameliorates allergic rhinitis via inhibiting JAK2/STAT3 pathway[J]. Biomed Pharmacother, 2018, 103: 621-627. doi:10.1016/j.biopha.2018.04.050.
[38] Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J].Immunnity,2005,23(5):479-490.doi:10.1016/j.immuni.2005.09.015.
[39] Suzukawa M, Iikura M, Koketsu R, et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor[J]. J Immunol, 2008, 181(9): 5981-5989. doi:10.4049/jimmunol.181.9.5981.
[40] Liu HC, Liao Y, Liu CQ. miR-487b mitigates allergic rhinitis through inhibition of the IL-33/ST2 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(23): 8076-8083. doi:10.26355/eurrev_201812_16497.
[41] Cui XH, Guo Y, Wang QR, et al. MiR-199-3p-Dnmt3a-STAT3 signalling pathway in ovalbumin-induced allergic rhinitis[J]. Exp Physiol, 2019, 104(8): 1286-1295. doi:10.1113/EP087751.
[42] Chen CH, Wang CZ, Wang YH, et al. Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification[J]. Mediat Inflamm, 2014, 2014: 1-13. doi:10.1155/2014/625048.
[43] Beier UH, Akimova T, Liu YJ, et al. Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells[J]. Curr Opin Immunol, 2011, 23(5): 670-678. doi:10.1016/j.coi.2011.07.002.
[44] Beier UH, Wang LQ, Bhatti TR, et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival[J]. Mol Cell Biol, 2011, 31(5): 1022-1029. doi:10.1128/MCB.01206-10.
[45] Hu D, Zhang Z, Ke X, et al. A functional variant of miRNA-149 confers risk for allergic rhinitis and comorbid asthma in Chinese children[J]. Int J Immunogenetics, 2017, 44(2): 62-70. doi:10.1111/iji.12307.
[46] 陆文敏. TGF-β通路基因microRNAs结合区单核苷酸多态性与变应性鼻炎的关联研究[D]. 南京: 南京医科大学, 2014.
[1] WANG Xingxin, YANG Xinyu, ZHENG Xiaojun, DING Lin, SHENG Yawen, BI Xiaoyun, YANG Jiguo. Acupoint application therapy for adenoid hypertrophy in children: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 122-124.
[2] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[3] LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91.
[4] NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115.
[5] LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122.
[6] LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129.
[7] LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146.
[8] GONG Xiaoyang, CHENG Lei. Analysis of proportion of outpatients with allergic rhinitis during the coronavirus infectious disease 2019 pandemic [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 245-255.
[9] ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259.
[10] LU Weili, JIANG Tao, LI Xianhua. Analysis of sIgE in polysensitized children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 260-265.
[11] HUANG Kaiyue, LI Xueqing, HAN Gouxin, ZHANG Qinxiu. Meta-analysis of acupoint catgut embedding in the treatment of allergic rhinitis based on the theory of “lung and spleen” [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 266-274.
[12] ZHU Zhengru, ZHANG Xiaobing. Meta-analysis of the curative effect of traditional Chinese medicine decoction combined with conventional western medicine on allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 281-289.
[13] HAN Yingying,LI Yanzhong. Obstructive sleep apnea hypopnea syndrome and subclinical arteriosclerosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 126-132.
[14] PANG Chong, BIAN Sainan, ZHANG Bing, YIN Xu, LU Yingxia, YE Pengfei, WANG Zhan, ZHAO Jing, GAO Yan, GUAN Kai. Short-term effect of Dermatophagoides farinae specific sublingual immunotherapy for children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 70-74.
[15] WANG Fei, LIU Yuying, XIAO Qiyi, DING Jian, GAO Shang, MAO Wei. A study on the associations between psychological factors and allergic rhinitis among residents [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 28-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(2): 116 -118 .
[2] ZHOU Zi-ning,JIN Guo-wei . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 462 -465 .
[3] ZHOU Bin,LI Bin . Endoscopic sinus surgery for 75 patients with chronic sinusitis and nasal polyps[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 24 -26 .
[4] XU Sainan,YANG Lei . Apoptosis of epithelial cells in nasal polyps promoted by erythromycin[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 27 -29 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 94 -95 .
[6] LIU Lian-he . Treatment of deep neck abscess in 37 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 180 -181 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 200 -203 .
[8] QIAO Yi,NI Guan-sen,CHEN Wen-wen . Effect of H-UPPP and nasal operations on obstructive sleep apnea syndrome in 38 cases
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 206 -208 .
[9] WANG Xiao-feng,LIN Chang,CHENG Jin-mei . Expression of ABAD in inner ears and its clinical significance in different age mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 207 -211 .
[10] FAN Qi-jun,HUANG Zhi-wu,MEI Ling,XIAO Bo-kui . Expression of the heat shock protein 27 in rat cochlea induced by sodium salicylate injection by the FQ-PCR technique[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 212 -214 .