Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (5): 148-155.doi: 10.6040/j.issn.1673-3770.0.2023.334
• Review • Previous Articles
HU Yi1, KONG Xuhui2
CLC Number:
| [1] Liberale C, Soloperto D, Marchioni A, et al. Updates on larynx cancer: risk factors and oncogenesis[J]. Int J Mol Sci, 2023, 24(16): 12913. doi:10.3390/ijms241612913 [2] He YT, Liang D, Li DJ, et al. Incidence and mortality of laryngeal cancer in China, 2015[J]. Chin J Cancer Res, 2020, 32(1): 10-17. doi:10.21147/j.issn.1000-9604.2020.01.02 [3] 黄海涛, 耿旭, 尚艳秋, 等. 2005—2016年中国喉癌发病及死亡趋势分析[J]. 中国全科医学, 2022, 25(5): 608-614. doi:10.12114/j.issn.1007-9572.2021.01.047 HUANG Haitao, GENG Xu, SHANG Yanqiu, et al. Trends of laryngeal cancer incidence and mortality in China, 2005—2016[J]. Chinese General Practice, 2022, 25(5): 608-614. doi:10.12114/j.issn.1007-9572.2021.01.047 [4] Romano R, Giardino G, Cirillo E, et al. Complement system network in cell physiology and in human diseases[J]. Int Rev Immunol, 2021, 40(3): 159-170. doi:10.1080/08830185.2020.1833877 [5] Yuan KT, Ye JN, Liu ZG, et al. Complement C3 overexpression activates JAK2/STAT3 pathway and correlates with gastric cancer progression[J]. J Exp Clin Cancer Res, 2020, 39(1): 9. doi:10.1186/s13046-019-1514-3 [6] Ding PP, Xu YQ, Li LY, et al. Intracellular complement C5a/C5aR1 stabilizes β-catenin to promote colorectal tumorigenesis[J]. Cell Rep, 2022, 39(9): 110851. doi:10.1016/j.celrep.2022.110851 [7] Kou WX, Li B, Shi Y, et al. High complement protein C1q levels in pulmonary fibrosis and non-small cell lung cancer associated with poor prognosis[J]. BMC Cancer, 2022, 22(1): 110. doi:10.1186/s12885-021-08912-3 [8] Krem MM, Di Cera E. Evolution of enzyme cascades from embryonic development to blood coagulation[J]. Trends Biochem Sci, 2002, 27(2): 67-74. doi:10.1016/s0968-0004(01)02007-2 [9] Revel M, Daugan MV, Sautés-Fridman C, et al. Complement system: promoter or suppressor of cancer progression?[J]. Antibodies(Basel), 2020, 9(4): E57. doi:10.3390/antib9040057 [10] Ferreira VP, Cortes C, Pangburn MK. Native polymeric forms of properdin selectively bind to targets and promote activation of the alternative pathway of complement[J]. Immunobiology, 2010, 215(11): 932-940. doi:10.1016/j.imbio.2010.02.002 [11] Pangburn MK. Initiation of the alternative pathway of complement and the history of “tickover”[J]. Immunol Rev, 2023, 313(1): 64-70. doi:10.1111/imr.13130 [12] Medler TR, Murugan D, Horton W, et al. Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy[J]. Cancer Cell, 2018, 34(4): 561-578.e6. doi:10.1016/j.ccell.2018.09.003 [13] Ricklin D, Reis ES, Mastellos DC, et al. Complement component C3-The “Swiss Army Knife” of innate immunity and host defense[J]. Immunol Rev, 2016, 274(1): 33-58. doi:10.1111/imr.12500 [14] Gonda TA, Tu SP, Wang TC. Chronic inflammation, the tumor microenvironment and carcinogenesis[J]. Cell Cycle, 2009, 8(13): 2005-2013. doi:10.4161/cc.8.13.8985 [15] Maman S, Witz IP. A history of exploring cancer in context[J]. Nat Rev Cancer, 2018, 18(6): 359-376. doi:10.1038/s41568-018-0006-7 [16] Schumacher TN, Thommen DS. Tertiary lymphoid structures in cancer[J]. Science, 2022, 375(6576): eabf9419. doi:10.1126/science.abf9419 [17] Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences[J]. Immunity, 2019, 51(1): 27-41. doi:10.1016/j.immuni.2019.06.025 [18] Pan YY, Yu YD, Wang XJ, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. doi:10.3389/fimmu.2020.583084 [19] Yang ML, Cai WS, Lin ZH, et al. Intermittent hypoxia promotes TAM-induced glycolysis in laryngeal cancer cells via regulation of HK1 expression through activation of ZBTB10[J]. Int J Mol Sci, 2023, 24(19): 14808. doi:10.3390/ijms241914808 [20] Jao TM, Wu CZ, Cheng CW, et al. Urokinase plasminogen activator deficiency aggravates cationic bovine serum albumin-induced membranous nephropathy through T helper cell type 2-prone immune response in mice[J]. Lab Invest, 2023, 103(7): 100146. doi:10.1016/j.labinv.2023.100146 [21] Geng YW, Fan J, Chen LY, et al. A notch-dependent inflammatory feedback circuit between macrophages and cancer cells regulates pancreatic cancer metastasis[J]. Cancer Res, 2021, 81(1): 64-76. doi:10.1158/0008-5472.CAN-20-0256 [22] Mastellos DC, Reis ES, Lambris JD. Complement C5a-mediated TAM-ing of antitumor immunity drives squamous carcinogenesis[J]. Cancer Cell, 2018, 34(4): 531-533. doi:10.1016/j.ccell.2018.09.005 [23] Senent Y, Tavira B, Pio R, et al. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells[J]. Cancer Lett, 2022, 549: 215900. doi:10.1016/j.canlet.2022.215900 [24] Zhang P, Zhang YF, Wang L, et al. Tumor-regulated macrophage type 2 differentiation promotes immunosuppression in laryngeal squamous cell carcinoma[J]. Life Sci, 2021, 267: 118798. doi:10.1016/j.lfs.2020.118798 [25] Nguyen TT, Thanh HD, Do MH, et al. Complement regulatory protein CD46 manifests a unique role in promoting the migration of bladder cancer cells[J]. Chonnam Med J, 2023, 59(3): 160-166. doi:10.4068/cmj.2023.59.3.160 [26] 周一静, 邹建银, 易红良, 等. TGFBI在头颈部鳞状细胞癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 85-95. doi:10.6040/j.issn.1673-3770.0.2022.459 ZHOU Yijing, ZOU Jianyin, YI Hongliang, et al. Expression of TGFBI in head and neck squamous cell carcinoma and its clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 85-95. doi:10.6040/j.issn.1673-3770.0.2022.459 [27] Zheng M, Li YM, Liu ZY, et al. Prognostic landscape of tumor-infiltrating T and B cells in human cancer[J]. Front Immunol, 2022, 12: 731329. doi:10.3389/fimmu.2021.731329 [28] Zhang XH, Shi MQ, Chen TL, et al. Characterization of the immune cell infiltration landscape in head and neck squamous cell carcinoma to aid immunotherapy[J]. Mol Ther Nucleic Acids, 2020, 22: 298-309. doi:10.1016/j.omtn.2020.08.030 [29] Kwan WH, van der Touw W, Paz-Artal E, et al. Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells[J]. J Exp Med, 2013, 210(2): 257-268. doi:10.1084/jem.20121525 [30] Gadwa J, Bickett TE, Darragh LB, et al. Complement C3a and C5a receptor blockade modulates regulatory T cell conversion in head and neck cancer[J]. J Immunother Cancer, 2021, 9(3): e002585. doi:10.1136/jitc-2021-002585 [31] Cao BR, Wang QF, Zhang H, et al. Two immune-enhanced molecular subtypes differ in inflammation, checkpoint signaling and outcome of advanced head and neck squamous cell carcinoma[J]. Oncoimmunology, 2017, 7(2): e1392427. doi:10.1080/2162402X.2017.1392427 [32] Ding PP, Li L, Li LY, et al. C5aR1 is a master regulator in Colorectal Tumorigenesis via Immune modulation[J]. Theranostics, 2020, 10(19): 8619-8632. doi:10.7150/thno.45058 [33] Wirsing AM, Rikardsen OG, Steigen SE, et al. Characterisation and prognostic value of tertiary lymphoid structures in oral squamous cell carcinoma[J]. BMC Clin Pathol, 2014, 14: 38. doi:10.1186/1472-6890-14-38 [34] Engelhard V, Conejo-Garcia JR, Ahmed R, et al. B cells and cancer[J]. Cancer Cell, 2021, 39(10): 1293-1296. doi:10.1016/j.ccell.2021.09.007 [35] Fridman WH, Petitprez F, Meylan M, et al. B cells and cancer: to B or not to B?[J]. J Exp Med, 2021, 218(1): e20200851. doi:10.1084/jem.20200851 [36] Ruffin AT, Cillo AR, Tabib T, et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma[J]. Nat Commun, 2021, 12(1): 3349. doi:10.1038/s41467-021-23355-x [37] 马汝显, 周玲. 鼻腔鼻窦内翻性乳头状瘤组织中HPV/补体C3C4表达及意义[J]. 分子诊断与治疗杂志, 2021, 13(11): 1834-1837. doi:10.19930/j.cnki.jmdt.2021.11.025 MA Ruxian, ZHOU Ling. Expression and significance of HPV/complement C3, C4 in inverted papilloma of nasal cavity and paranasal sinuses[J]. Journal of Molecular Diagnostics and Therapy, 2021, 13(11): 1834-1837. doi:10.19930/j.cnki.jmdt.2021.11.025 [38] Rickert RC. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex[J]. Curr Opin Immunol, 2005, 17(3): 237-243. doi:10.1016/j.coi.2005.03.001 [39] Platt JL, Silva I, Balin SJ, et al. C3d regulates immune checkpoint blockade and enhances antitumor immunity[J]. JCI Insight, 2017, 2(9): e90201. doi:10.1172/jci.insight.90201 [40] Carroll MC. CD21/CD35 in B cell activation[J]. Semin Immunol, 1998, 10(4): 279-286. doi:10.1006/smim.1998.0120 [41] Lu YW, Zhao QY, Liao JY, et al. Complement signals determine opposite effects of B cells in chemotherapy-induced immunity[J]. Cell, 2020, 180(6): 1081-1097.e24. doi:10.1016/j.cell.2020.02.015 [42] Lechner A, Schl??er HA, Thelen M, et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma[J]. Oncoimmunology, 2019, 8(3): 1535293. doi:10.1080/2162402X.2018.1535293 [43] Ajona D, Pajares MJ, Chiara MD, et al. Complement activation product C4d in oral and oropharyngeal squamous cell carcinoma[J]. Oral Dis, 2015, 21(7): 899-904. doi:10.1111/odi.12363 [44] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15: 178-196. doi:10.1038/nrm3758 [45] Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. doi:10.1007/s11684-018-0656-6 [46] Jie XX, Zhang XY, Xu CJ. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: mechanisms and clinical applications[J]. Oncotarget, 2017, 8(46): 81558-81571. doi:10.18632/oncotarget.18277 [47] Nuti SV, Mor G, Li PY, et al. TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis[J]. Oncotarget, 2014, 5(17): 7260-7271. doi:10.18632/oncotarget.2428 [48] Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, et al. EMT factors and metabolic pathways in cancer[J]. Front Oncol, 2020, 10: 499. doi:10.3389/fonc.2020.00499 [49] Yu L, Lu SM, Tian JJ, et al. TWIST expression in hypopharyngeal cancer and the mechanism of TWIST-induced promotion of metastasis[J]. Oncol Rep, 2012, 27(2): 416-422. doi:10.3892/or.2011.1481 [50] Scanlon CS, Van Tubergen EA, Inglehart RC, et al. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma[J]. J Dent Res, 2013, 92(2): 114-121. doi:10.1177/0022034512467352 [51] Cho MS, Rupaimoole R, Choi HJ, et al. Complement component 3 is regulated by TWIST1 and mediates epithelial-mesenchymal transition[J]. J Immunol, 2016, 196(3): 1412-1418. doi:10.4049/jimmunol.1501886 [52] Goswami MT, Reka AK, Kurapati H, et al. Regulation of complement-dependent cytotoxicity by TGF-β-induced epithelial-mesenchymal transition[J]. Oncogene, 2016, 35(15): 1888-1898. doi:10.1038/onc.2015.258 [53] Kesselring R, Thiel A, Pries R, et al. The complement receptors CD46, CD55 and CD59 are regulated by the tumour microenvironment of head and neck cancer to facilitate escape of complement attack[J]. Eur J Cancer, 2014, 50(12): 2152-2161. doi:10.1016/j.ejca.2014.05.005 [54] Chen BD, Zhou WY, Tang CF, et al. Down-regulation of C3aR/C5aR inhibits cell proliferation and EMT in hepatocellular carcinoma[J]. Technol Cancer Res Treat, 2020, 19: 1533033820970668. doi:10.1177/1533033820970668 [55] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. doi:10.1016/j.cell.2011.02.013 [56] Lin XR, Wu ZY, Hu H, et al. Non-coding RNAs rewire cancer metabolism networks[J]. Semin Cancer Biol, 2021, 75: 116-126. doi:10.1016/j.semcancer.2020.12.019 [57] Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs[J]. Int J Mol Sci, 2014, 15(6): 9331-9342. doi:10.3390/ijms15069331 [58] Kristensen LS, Hansen TB, Ven? MT, et al. Circular RNAs in cancer: opportunities and challenges in the field[J]. Oncogene, 2018, 37(5): 555-565. doi:10.1038/onc.2017.361 [59] Wang Z, Sun AQ, Yan AH, et al. Circular RNA MTCL1 promotes advanced laryngeal squamous cell carcinoma progression by inhibiting C1QBP ubiquitin degradation and mediating beta-catenin activation[J]. Mol Cancer, 2022, 21(1): 92. doi:10.1186/s12943-022-01570-4 [60] Dai XF, Ye YJ, He FL. Emerging innovations on exosome-based onco-therapeutics[J]. Front Immunol, 2022, 13: 865245. doi:10.3389/fimmu.2022.865245 [61] Whiteside TL. Tumor-derived exosomes and their role in tumor-induced immune suppression[J]. Vaccines, 2016, 4(4): 35. doi:10.3390/vaccines4040035 [62] Zhang HR, Lu J, Liu J, et al. Advances in the discovery of exosome inhibitors in cancer[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1322-1330. doi:10.1080/14756366.2020.1754814 [63] Li T, Li J, Wang HT, et al. Exosomes: potential biomarkers and functions in head and neck squamous cell carcinoma[J]. Front Mol Biosci, 2022, 9: 881794. doi:10.3389/fmolb.2022.881794 [64] Theodoraki MN, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res, 2018, 24(4): 896-905. doi:10.1158/1078-0432.CCR-17-2664 [65] Wang JT, Zhou YD, Lu JG, et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma[J]. Med Oncol, 2014, 31(9): 148. doi:10.1007/s12032-014-0148-8 [66] Abu-Humaidan AHA, Ekblad L, Wennerberg J, et al. EGFR modulates complement activation in head and neck squamous cell carcinoma[J]. BMC Cancer, 2020, 20(1): 121. doi:10.1186/s12885-020-6615-z [67] Bushey RT, Gottlin EB, Campa MJ, et al. Complement factor H protects tumor cell-derived exosomes from complement-dependent lysis and phagocytosis[J]. PLoS One, 2021, 16(6): e0252577. doi:10.1371/journal.pone.0252577 [68] Liu XM, Wang P, Zhang CY, et al. Epidermal growth factor receptor(EGFR): a rising star in the era of precision medicine of lung cancer[J]. Oncotarget, 2017, 8(30): 50209-50220. doi:10.18632/oncotarget.16854 [69] 朱晓城, 钱晓云, 顾亚军, 等. MGMT和EGFR蛋白在喉鳞状细胞癌中的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 68-72. doi:10.6040/j.issn.1673-3770.0.2017.116 ZHU Xiaocheng, QIAN Xiaoyun, GU Yajun, et al. Expression and clinical value of MGMT and EGFR in laryngeal squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(4): 68-72. doi:10.6040/j.issn.1673-3770.0.2017.116 |
| [1] | YANG Ming, LIU Xuexia, ZHANG Hua. Progress of m6A recognition protein IGF2BPs in head and neck cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(3): 153-161. |
| [2] | NI Rongsheng, SHEN Xiaohui, GAO Xia. Correlation analysis of gene expression profile of matrix metalloproteinases and their inhibitors in laryngeal squamous cell carcinoma and clinicopathological features [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 55-61. |
| [3] | WU Bin, ZHOU Jingchun. Single cell sequencing analysis of RPN2 expression pattern in laryngeal squamous cell carcinoma cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 1-11. |
| [4] | WANG Kaijian, CHEN Xuesheng, WANG Wei. A meta-analysis of the correlation between platelet-lymphocyte ratio and prognosis of laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 67-73. |
| [5] | SONG Fei, SONG Hao, LI Yumei, MOU Yakui, SONG Xicheng. Immunomodulatory roles of tumor-derived exosomes in the microenvironment of head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 92-100. |
| [6] | ZHANG Yonghong, ZHANG Hui, WANG Caihua, YANG Xinxin, WU Yungang, ZHAO Yufeng, PANG Taizhong, LI Xiaoyu. Construction of an immune-associated gene prognostic model and screening of targeted molecular drugs for laryngeal squamous cell carcinoma based on the TCGA database [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 54-62. |
| [7] | LI Yanan, LIANG Hui. Study progress on the mechanism of human papillomavirus-related oropharyngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 104-110. |
| [8] | LIU Yong, YUAN Cunli, CAO Hui, ZHENG Chengcai, CHAO Fang, XU Fenglei. CHD1L promotes proliferation, invasion and metastasis of laryngeal squamous cell carcinoma cells by EMT [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 32-39. |
| [9] | FAN Yiyan, ZHANG Xiaolin, LIU Xiuzhen, YIN Jingjing, YUAN Jin, WANG Yanfei, CHEN Jun. Expression and clinical significance of CPS1 in laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 72-76. |
| [10] | CHEN Huijun, SONG Shenghua, DONG Weida, ZHOU Han. Prognostic role of preoperative fibrinogen levels in patients with laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 110-114. |
| [11] | WANG Kuirong, RAO Lihua, LI Zhuan, DUAN Bingzhi. Association between Helicobacter pylori and laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 38-42. |
| [12] | ZHANG Mingde, ZHANG Zuping, YU Xuemin, WEI Yanhong, YUAN Ying. RASSF2A methylation in laryngeal squamous cell carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 64-67. |
| [13] | ZHU Xiaocheng, QIAN Xiaoyun, GU Yajun, SHEN Xiaohui, SONG Panpan, LI Hui, GAO Xia. Expression and clinical value of MGMT and EGFR in laryngeal squamous cell carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 68-72. |
| [14] | LIU Fang1, LAI Jian-xin1, LI Rui-yu1, LI Guan-zhen2. Th17/Treg cell ratio in the peripheral circμlation of human laryngeal squamous cell carcinoma. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(5): 4-7. |
| [15] | XU Hai-yan1, PENG Jie-ren1, OU Yong-kang1, ZHANG Qiong-xia2, ZHANG Cun-liang1, TANG Zhi-ping1, GUAN Zhong1. Expression and clinicopathological significance of nuclear epidermal growth factor receptor, Aurora-A kinase in laryngeal squamous cell carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(5): 16-21. |
|
||